Micro-channel studies with CO₂ at University of Twente *first measurements and future plans*

A.Koutoulaki (UT, Nikhef), Marcel ter Brake (UT), Harry Holland (UT)

Introduction

 μ -channel cooling \rightarrow

- Cooling high power density particle physics pixel detectors
- Minimize material budget
- High heat transfer coefficient (HTC)

Gap on simulation and prediction models \rightarrow

- Preliminary simulation model developed until now for CO₂ is suited for horizontal evaporators with equivalent diameter down to 1.4 mm
- For μ-channels (<1 mm); no specific prediction model exists for pressure drop and HTC for CO₂
- Prediction model exists for other refrigerants (R236-fa, R245-fa, R134-a tested at above 0°C)

Studies summary

- Studies focus on \rightarrow
 - Extending simulation model to μ -channels
 - Validation of existing prediction models with quantitative CO₂ flow measurements at -30°C to 20°C (Pressure drop, HTC, Flow regime) for various ID

Mainly focus on \rightarrow

- Single straight circular μ-channel mainly stainless steel ID 0.25 mm followed by a glass section (fused silica with coating, thickness ~ 0.10 mm)
- Measurement matrix at -20 °C evaporation temperature (Mass flow, Power)
- \Box Silicon-pyrex device with multiple straight rectangular μ -channels (~ID 0.20 mm)
- Measurement matrix (Power, Evaporation temperature)

Set-up

By-pass

- Absolute pressure at inlet
- Differential pressure between inlet and outlet
- Pressure controller valve for the test section
- Mass flow (total and in the test section) with Coriolis flow meters, M13 mini-Coriolis Bronkorst and RHE015 Rheonik

□Thermocouples type K for blow system, E for test section

- □Vacuum for the test section with glass chamber
- DAQ and signal conditioning
- □NI 6259 DAQ and PICO USB-TC08

Readings accuracy; TC ~ 1.7 °C, PT1000 ~0.2 °C, P ~0.5 bar

Due to increased heat leaks, inlet is cooled further in vacuum feedthrough, tube-in-tube CHFX

Designed by Harry Holland

- High speed camera for flow visualization (FASTCAM SA-X2 Photron)
- □ Fiber optics bundle Olympo ILP1

Test section in vacuum- temperatures

- \Box 7 thermocouple type E (OD~ 0.1 mm) between the heater with reference cold junction the T_{ref}
- □ 2 thermocouple type E before the preheater and after the heater
- **1** PT1000 before the heater = T_{ref}
- □ Heat sink them on the cooling tube

Test section in vacuum-heating

- Heating of the evaporator and preheater with manganine wire
- Analytical and numerical analysis showed no big effect of unheated sections in terms of temperature and heat distribution at the outer and inner wall

for 0.5 mm heated and unheated space

Measurements camera

Record Rate(fps) : 40000 Shutter Speed(s) : 1/50000

Completed tests for mass flow range 0.02 -0.1 g/s and power up to 20 W at -20 °C

□ Test section with and without the glass tube

Slide from Forum on Tracking Detector Mechanics 2015 – Amsterdam- by Paolo Petagna

Detail of the transition between "capillaries" and "channels"

The heater is realized by uniformly depositing a layer of metal on a silicon chip. 16 parallel straight micro-channels (48 mm long)

proto for detector cooling Power densities : 0.5 to 1 W/cm²

Device design and fabrication:

200 × 200 µm separated by 200 µm wide walls 2 holes for fluidic inlet and outlet (1.6 mm diameter)

«Capillaries» $(20 \,\mu\text{m wide x} 200 \,\mu\text{m deep}, 7 \,\text{mm long})$ To bring CO₂ in saturation conditions at the channel entrance

Pillars in the outlet to maximize the bonded surface

> University of Twente MANCH<mark>Est</mark>ER

Sequence of testing:

- Restrictions take advantage of the high pressure budget available for CO₂ to induce a strong pressure drop and to distribute liquid at the inlet but start evaporating under the heat source

- Restrictions are needed to avoid vapour bubble back-flow, inducing high instability in flow and thermal conditions

Preliminary tests Si/pyrex multi µ-channels

Measure temperatures at inlet/outlet in contact with the fluid

Measure temperatures along the silicon

First tests already – with camera

One of the channels was clogged; very small capillaries

- The flow wasn't uniformly distributed
- Different velocities

Preliminary tests Si/pyrex multi µ-channels

Record Rate(fps) : 30000 Shutter Speed(s) : 1/200000

Record Rate(fps) : 50000 Shutter Speed(s) : 1/266666

Future plans

- Focus on the si/pyrex
- Complete the analysis and compare with prediction models
- Publish paper on first results for single channel

Thank you!

17