

Activities in Task 14.3.1 Test infrastructure for innovative calorimeters with semiconductor readout

Víncent Boudry

École polytechnique, Palaiseau

AIDA-2020 2nd Annual Meeting 04-07/04/2017, Paris

TNA support + WP14

Recent news on SiW-ECAL

Funding from Paris-Saclay P2IO "physics of 2 Infinities and Origins" Gran t→ LLR, LAL & IRFU (CEA)

- HGCFC: High-Granularity Calorimeters for future Colliders started (oct. 2016).
 dubbed "HiGHTEC" in between
 - SiW-ECAL for LC's
 - CMS-HGCAL \supset timing studies
 - ATLAS-HGTD design & studies
- Complementary of AIDA-2020:

HIgh Granularity Hybrid Timing and Energy Calorimetry A P210 project by LLR, LAL and IRFU

Coord. Y. Sirois

- Completion of SiW-ECAL prototype; Study of long slab; Mechanical studies
- DAQ for ILD
- 2 post-docs recruited for 2 years:
 - Adrian Irles (WP5) (since 7/11/16) @ LAL on SiW-ECAL : DAQ & tests
 - Artur Lobanov (≥1/12) @ LLR on SiW-ECAL (25%) & CMS-HGCAL(75%): SK2(a) test & analysis

Plans for 2017 in a nutshell...

Test completely the 10 SLAB's produced in 2016

- June 2016 tests: mitigated results
 - SiW-ECAL suffered from noise (of still unknown origin)
 - \Rightarrow « SLAB's not tested in beam »
 - DAQ development (SiW-ECAL+ SDHCAL) ✔
 - Shown to work; To be completed with working prototype
- Standalone tests in June @ DESY
 - Improvement of DQM & DAQ (Adrian @ LAL)
 - Improvement of Power Supplies (LAL & LLR)
 - Some behaviour linked to number of SLABs in operation
 - Review of the procedure to optimise the noise & retriggering handling in the chips
 - Thorough check of rates vs conditions:
 - » slower clock (less edges)

Combined tests with SDHCAL → Fall

- after June validation
 - test in IPNL of both set-ups
- news mechanical structure
 - Flexible number of layers, for $24X_0$ W

Production of additional layers with SK2A & 525 μm wafers

- Tests of SK2A (many improved features): on-going
- Test of wafers HPK wafers : received. To be tested @ LPNHE
- new PCB FEV12 ordered (to be received this week)
- Assembly bench adaptation @ LLR \otimes LPNHE $\,\otimes$ LAL
 - thicker wafers for shorts slabs
 - Long SLAB preparation
 - Test of gluing with thin PCB's

End March: Decision **not** to go in 2017: *manpower issues*

Preparation of June 2017 BT @ DESY

June 12–24th in DESY, TB24/1 (PCMag line)

- Test 10 SLABs, with SK2 (same as June 2016)
- Possibility to have B filed test of electronics (secondary goal)
 - 120-130kg. Usable Ø ~ 75cm

Test set-up:

- Remounted at LAL for implem of DQ (Adrian Irles)
- DAQ updates (Pyrame v3, \supset improved online rec).
- Power Distribution to be rebuild.
- Data taken at LAL with the prototype.
- Noise run, with low fast shaper threshold value (DAC = 190)
- FEV10, SK2.
- HV = on (110V)
- Plots for one ASIC
- Nhits (SCA=0 and SCA>0)
- BCID (SCA=0 and SCA>0). As the threshold is quite low, the BCIDs are ~ val_evt BCID.

Threshold scans...

Not optimized analysis or results checked carefully but ... promising.

Test of SK2 and SK2a (LLR)

Test bench at LLR:

- FEV9 with single BGA socket
- ASIC in power pulsing (PP)
 - CCC, LDA, DIF, SMB v3
 - FastCLK: 50 MHz, Slow CLK: 2.5MHz
- DAQ software: Pyrame/Calicoes v2-3 (development branch)
- Possibility of in phase signal injection
- \oplus
- Quick exchange of ASICs
- External command lines available on FEV connectors
- Single chip allows high spill frequencies (up to 60 Hz)
- Θ
- Socket less reliable than soldering
- Lower quality SMB-FEV connections \Rightarrow More exposed to noise

 \Rightarrow Thorough check of running cond. with single chips \Rightarrow Procedure for SLABs

A. Lobanov, S. Chaitanya, V. Boudry, J. Nanni

ASIC testing: set-ups

Tests of SK2A (outside of Ω mega):

- Dedicated test board (all protections on)
 - Kyushu #LabView (copy of Ωmega)
 - Ω mega \leftrightarrow LLR (CMS & CALICE)
 - Adaptation to PYRAME (Yannick Geerebaert)

\oplus

- ASIC soldered on board
- Decoupling capacitances on all critical power line on the board
- External and internal signals available
- Θ
- No power pulsing possible
- ASIC not replaceable

Testboard1

Testboard2

- -- Being equipped with a BGA socket
- -- ASIC chip can be replaced easily

-- SKIROC2A is directly mounted

New Ω test board for SKIROC2A produced with DIF connector

From : Izumi Sekiya, LCWS2016

SK2A first results

Thorough checks on 1 mip injected signal (Izumi Sekiya for Kyushu group)

- All seems OK
- No difference in Analog part
- Trigger:
 - large channel-by-channel adjustment ✔

Fast shaper & triggering @SKIROC2,2A

Noise on Trigger Channel *S-curves (single chan scan)*

- Acqusition length: 10μs (spill length: 1.410ms)
- Sometimes "val_event" seems to trigger first few SCAs

• SK2 has narrow peak (as expected), but SK2A has a wide distribution

• Low spread between channels in SK2 and SK2A

Planning 2017: Prototype

with 10 first^t SLAB's

- noise handling
 - Scans.
 - Time dependance ?
 - PS dependance ?
- Cosmic data taking
 - A hasher running conditions... (longer integration time)
- Beam test in 12-24 June @ DESY
 - Readiness review mi-April

Analysis + of nov 15 data.

 $- \Rightarrow$ Start of assembly for second batch ...

 \Rightarrow Test of 20 SLABs early in 2018

- with new structure [Guillaume Fayolle]

Plans for 2017 in a nutshell...

Test completely the 10 SLAB's produced in 2016

- June 2016 tests: mitigated results
 - SiW-ECAL suffered from noise (of still unknown origin)
 - \Rightarrow « SLAB's not tested in beam »
 - DAQ development (SiW-ECAL+ SDHCAL)
 - Shown to work; To be completed with working prototype
- Standalone tests in June @ DESY
 - Improvement of DQM & DAQ (Adrian @ LAL)
 - Improvement of Power Supplies (LAL & LLR)
 - Some behaviour linked to number of SLABs in operation
 - Review of the procedure to optimise the noise & retriggering handling in the chips
 - Thorough check of rates vs conditions:
 - » slower clock (less edges)
 - » absolute noise rate determination

Combined tests with SDHCAL → Fall

- after June validation
 - test in IPNL of both set-ups
- news mechanical structure
 - Flexible number of layers, for $24X_0$ W
- Production of additional layers with SK2A & 525 μm wafers
 - Tests of SK2A (many improved features): on-going
 - Test of wafers HPK wafers : received. To be tested @ LPNHE
 - new PCB FEV12 ordered (to be received this week)
 - Assembly bench adaptation @ LLR \otimes LPNHE $\,\otimes$ LAL
 - thicker wafers for shorts slabs
 - Long SLAB preparation
 - Test of gluing with thin PCB's

End March: Decision **not** to go in 2017: *manpower issues*

Full assembly chain *resp:* R. Cornat

J. Nanní, M. Louzír, M. Frotín, J. Bonís, P. Cornebíse, J. Davíd, D. Lacour, S Pavy, P. Ghíslaín

SiW-ECAL Overview

Test beam prototype and assembly process

Test beam

August and November 2016 – 120 GeV pions

- 2 sensors IN2P3 3x3 mm²:
 - PIN diode
 - LGAD

Test bench for Long Slab Assembly

Mechanical [Julien, Alice]

- Precision needed
 - Cumulative errors \Rightarrow need for positionning

Les ASU seront posés en position sur le banc et l'alignement sera affiné mécaniquement avec l'outillage rouge avant fixation et interconnexion ou collage.

- 3 methods proposed
 - with risk evaluation... in discussion.
- Assembly bench upgrade beginning of summer

Electronics [Jérôme]

– 4 ASU set-up †

- New one \Rightarrow 10-12 ASU with
 - Soldering OR Connectors
 - Some baby wafers
 - Way to emulate missing ones

S

Vincent.Boudry@in2p3.fr

Wafers (Rémi, Taikan)

"Edgeless wafers" integrated in 2 of the 10 SLABs

− needs BT data (with muon beam \rightarrow edge scan)

Baby sensors

- HPK change or resistivity in 2013 (without notice)
- Parasitic production

Position Sensitive Detector

- Laser scan
 - reconstruction.
- Production of SLAB in Japan (if budget)
 - FEV altern.
 - existing version FPC (Kapton) ; Hexagonal 8"

320 µm thickness lower resistivity

16,17: Hexagon (hexagonal cells, triangular cells) 19,20: 4x4 (small pix) (0 GR, 2 GR, 2.5 mm) 21,22: PSD (7 mm) (meshed, non-meshed)

Each > 40 sensors

News from HGCAL; preparation of BT in May

Some choices made during the last 2 months

- **not to** use a carbon fibre structure for HGCAL
 - more flexibility in technical choices
- Lead/Cu instead of W (for cost reasons) as absorber
- Pending: internal geometry (30° vs 60° elements)

Technical Review of Square vs Hexagonal wafer

- started 9th of Nov. 2016, ~finished
 - almost definitive choice made to stick to hexagonal geometry
 - review with Wafer producers of 2 options
 - » with side wafers for square
 - $-\,$ yield, number of channels (power consumption $_{\,\propto\,}$), coverage, geometry & trigger issues, \ldots

ASIC's

- SKIROC2CMS gives acceptable results
 ⇒ will be used for future Beam-Tests
- SK2A available for SiW-ECAL
 - Comparative tests @ LLR on-going

Deliverables & Milestones

Milestone	Milestone	Related	Est.	Means of verification	Exp'd Del. date	
number		WPs	date			
MS14	Assembly and QA chain demonstration for highly	14.3.1	M12	2-3 operational layers	30/04/16	23/06/16
	granular silicon calorimeters			produced		
MS15	Design specifications of test stations for irradiated	14.3.1	M12	Report to StCom	30/04/16	24/06/16
	silicon sensors and LHC oriented front-end					
	electronics					

Deliverable (number)	Deliverable name (short description of deliverable)	WP	Lead Participant	Туре	Del. Month	Delivery Date
D14.3	Advanced Assembly chain for Si calorimeters (prototypes assembly and technical documentation of process)	14.3.1	CNRS	DEM	M36	30/04/18
D14.5	Common running of calorimeter prototypes (technologies embedding Central DAQ standards from WP5 and performance results)	14.4.1	DESY	DEM	M36	30/04/18

Networking

1) Infrastructure: To what extend is your work an infrastructure or part of an infrastructure that can be used in the European (and beyond) Research Area?

- Assembly benches techniques :
 - DAQ SW (Pyrame)
 - ASIC test $\rightarrow \Omega$ mega chips,
 - Spring array & Gluing benches for PCB with pad readout,
 - pick and place for sensitive devices

2) Network: Does your work belong to a bigger network on similar research topics (this is similar but not exactly the same as 1))?

- P2IO: local to Paris region
- 3) Synergies: Do you create synergies beyond your actual field of working?
 - Counter-question: What is «the field of working» ? Silicon Sensors, Calorimetry, Detectors, HEP, Physics, Science, ... ?
- 4) Industrial partners: Are you in contact or will you in the near future establish sustained contacts with industrial partners (of any size)?
 - Hamamatsu (Wafers), Eolane (Assembly of Electronics components)

Extras

Vincent.Boudry@in2p3.fr WP14.3.1 report | TL meeting | 05/09/2016

Overview ILD & RnD

From Japan & IN2P3

- Cost reduction : \rightarrow redesign of ILD
- Support in France
 - IN2P3 \Rightarrow Prototype & Beam Test
 - AIDA-2020: assembly benches & BT
 - HIGHTEC from P2IO [LLR, LAL, Saclay] ⊗ [CMS,CALICE,ATLAS]
 - HIgh Granularity Si CALOs
 - R&D: Long SLABs, COB, DAQ
 - PostDocs [Artur, Adrian]

AIDA

CNrs

IN2P3

Effort in design of ILD well restarted

- ... and documented!
- \Rightarrow criteria for prototypes

Main priorities

- Test of prototype [June 2017, 2018]
 - And analysis
 - No more BT in sept 2017
- Check critical Studies and R&D for ILD
 - e.g. Long SLAB
 - DAQ, geometry
 - $\leftrightarrow \text{ with contracts planning}$

Studies ASU with wafers

3rd bench

Goals:

•

...

- Mesure the leakage current,
- Compare level of noise, Scurves ...
- Linearity of analog channel

5000 4000 3000 2000 1000 0 170 180 0 150 190 160 200 210 220

CALICE Collaboration meeting nanni@llr.in2p3.fr -

2017 March 22-24