

## WP15.4 Status





March 2017



## **Status**



- Workshop with companies in the field of magnet construction, in order to:
  - Have magnets with a very good correspondence with specifications
  - Speed-up delivery
  - Have a better control on design and validation phase (especially magnetic measurements)
  - Improve KTT
- Provide to the producer not only detailed specifications, but an advanced design of the required magnets
- This means some delay on the bids wrt to the schedule, that should be reabsorbed by the fact that the **designs are practically already done by us**:
  - Complete magnetic calculation, including beam quality, pole design, iron quality, saturation...
  - Complete design of coils: electrical, mechanical, thermo-hydraulic
  - Complete design of overall mechanical structure (plates, bolts, alignment) and supports
- Almost 20 companies in the field of electro-mechanic constructions, magnets, power supplies and UHV technology
- A full day in Bologna, on Mar. 1<sup>st</sup> 2017





## **Status**

- All bids for magnets procurement out by the end of January
  - But we will provide to the supplier a detailed design
- Civil engineering preliminary project approved
  - Working on the executive one (external company)
- BTF closed to the users from mid July (apart 2-3 weeks in Sep.)
- Design slightly modified in order to avoid modifications of the line inside the LINAC tunnel
  - Brings interference with the operation of the collider complex to ≈0
  - Easier installation (and alignment)
  - Also requires 1 quad less (slightly increased the gradient of the other quads)
- Vacuum requirements relaxed: the two BTF lines will be separated by the main LINAC vacuum by a 0.5 mm Be window (already existing); design modified in order to host pumping ports
  - Vacuum components design on-going
- Infrastructure and installation:
  - Thermic, hydraulic and electric calculations completed
  - Specs for "on-the-shelf" power supplies
  - Cooling and power supply for new line started









March

## Team

#### Magnets

- Line design, simulation and optimization
  - B. Buonomo, C. Di Giulio, L. Foggetta
- Magnetic, electric and thermo-hydraulic calculation and design
  - F. lungo, R. Ricci, C. Sanelli, L. Sabbatini, A. Vannozzi:
- Mechanical design
  - R. Mascio, L. Pellegrino, G. Sensolini:
- Preparation, measurements, installation
  - B. Bolli, S. Martelli, F. Sardone:

#### Cooling and power supply

S. Cantarella, R. Ceccarelli, R. Ricci, U. Rotundo

#### Vacuum

D. Alesini, S. Bini, L. Foggetta, V. Lollo

#### Timing

A. Drago, A. Stella

#### Controls

L. Foggetta, C. Di Giulio, A. Michelotti, A. Stecchi

#### **Radio-protection**

• A. Esposito, O. Frasciello

#### **Civil Engineering**

O. Cerafogli, S. Incremona

#### Diagnostics

C. Di Giulio, L. Foggetta, E. Spiriti, A. Stella







# **Civil engineering**





- For speeding up the execution of the building modifications, we removed the motorized shielded door (on the side of the external wall), replacing it with a removable structure of concrete blocks (chicane)
- Much easier (and cheaper): the only modification to the building structure is the opening of two (normal) doors











INF

Istituto Nazionale di Fisica Nucleare

# Fast 15° dipole

- Study magnetic field in the gap (and in the return) vs. iron material, size, shape
- Current vs. coil conductor section, length, type, n of coils
- Calculate thermo-hydraulic parameters







| GENERAL DATA                                     |         |  |  |  |
|--------------------------------------------------|---------|--|--|--|
| Beam energy (MeV)                                | 1000    |  |  |  |
| Curvature radius (m)                             | 3       |  |  |  |
| Gap (mm)                                         | 25      |  |  |  |
| Pole width (mm)                                  | 110     |  |  |  |
| Nominal flux density (T)                         | 1,11    |  |  |  |
| Bending angle (deg)                              | 15      |  |  |  |
| N per pole (turns)                               | 36      |  |  |  |
| Ampere-turns/pole                                | 11052   |  |  |  |
| Yoke Width (mm)                                  | 277     |  |  |  |
| Yoke Height (mm)                                 | 359     |  |  |  |
| Yoke Length (mm)                                 | 760     |  |  |  |
| Overall Length (mm)                              | 329     |  |  |  |
| Overall Height (mm)                              | 359     |  |  |  |
| Overall Length (mm)                              | 913     |  |  |  |
| Good Field Region (mm)                           | ±25     |  |  |  |
| Field quality (ΔB/B)                             | 6,4E-03 |  |  |  |
| Integrated Field quality (ΔΙΒ/ΙΒ)                | 2,3E-03 |  |  |  |
| Total weight (kg)                                | 516     |  |  |  |
| ELECTRICAL INTERFACE                             |         |  |  |  |
| Conductor dimension                              | 7x7 Φ4  |  |  |  |
| Nominal Current (A)                              | 316     |  |  |  |
| Nominal Resistive Voltage (V)                    | 113     |  |  |  |
| Rtot (Ω)                                         | 0,078   |  |  |  |
| Nominal inductance (H)                           | 0,029   |  |  |  |
| Nominal Power (kVA)                              | 35      |  |  |  |
| Maximum Line Cable lenght (m)                    | 20      |  |  |  |
| Proposed cable cross section ( mm <sup>2</sup> ) | 95      |  |  |  |
| Proposed Output PS Current (A)                   | 330     |  |  |  |
| Proposed Output PS Voltage (V)                   | 130     |  |  |  |
| Proposed Output PS Power (kVA)                   | 42,9    |  |  |  |
| WATER COOLING                                    |         |  |  |  |
| Number of pancakes per pole                      | 3       |  |  |  |
| Number of pancake circuits                       | 6       |  |  |  |
| Number of series circuits                        | 2       |  |  |  |
| ΔT water (°C)                                    | 15      |  |  |  |
| Maximum Water flow (m <sup>3</sup> /s)           | 0.117   |  |  |  |
| Maximum Water velocity (m/s)                     | 1,55    |  |  |  |
| Maximum ΔP (bar)                                 | 2,94    |  |  |  |

# Fast dipole:

| IRON     |          |            |      |             |     |  |
|----------|----------|------------|------|-------------|-----|--|
| V (mm3)  | PACK FAC | d (kg/dm3) |      | Weight (kg) |     |  |
| 6,75E+07 | 0,96     |            | 7,85 |             | 509 |  |
| COILS    |          |            |      |             |     |  |
| V (mm3)  | FILL FAC | d (kg/dm3) |      | Weight (kg) |     |  |
| 9.46E+06 | 0,59     |            | 8,9  |             | 50  |  |

Power supply specs calculated assuming for ramping+stabilization ≈100 ms





# **DC dipoles**









| GENERAL DATA                                               |              |  |  |  |  |
|------------------------------------------------------------|--------------|--|--|--|--|
| Beam energy (MeV)                                          | 921          |  |  |  |  |
| Curvature radius (m)                                       | 1,8          |  |  |  |  |
| Gap (mm)                                                   | 35           |  |  |  |  |
| Pole width at the gap (mm)                                 | 190          |  |  |  |  |
| Pole width at the yoke (mm)                                | 220          |  |  |  |  |
| Nominal flux density (T)                                   | 1,7056       |  |  |  |  |
| Bending angle (deg)                                        | 45,00        |  |  |  |  |
| N per pole (turns)                                         | 120          |  |  |  |  |
| Iron Width (mm)                                            | 735          |  |  |  |  |
| Overall Width                                              | 780          |  |  |  |  |
| Overall Height (mm)                                        | 503          |  |  |  |  |
| Overall Lenght (mm)                                        | 1672         |  |  |  |  |
| Good Field Region (mm)                                     | ±15          |  |  |  |  |
| Field quality (ΔB/B)                                       | 4,29E-04     |  |  |  |  |
| Integrated Field quality (ΔIB/IB)                          | 3,78E-04     |  |  |  |  |
| Total weight (kg)                                          | 4006         |  |  |  |  |
| ELECTRICAL INTERFACE                                       |              |  |  |  |  |
| Conductor dimension                                        | 9.5x9.5 Φ5.5 |  |  |  |  |
| Nominal Current (A)                                        | 262          |  |  |  |  |
| Nominal Resistive Voltage (V)                              | 72           |  |  |  |  |
| Rtot (Ω)                                                   | 0,276        |  |  |  |  |
| Nominal inductance (H)                                     | 0,423        |  |  |  |  |
| Nominal Voltage on magnet (V) with a 10 s raising time (V) | 83           |  |  |  |  |
| Nominal Power (kVA)                                        | 22           |  |  |  |  |
| Maximum Line Cable lenght (m)                              | 20           |  |  |  |  |
| Proposed cable cross section ( mm <sup>2</sup> )           | 95           |  |  |  |  |
| Proposed Output PS Current (A)                             | 280          |  |  |  |  |
| Proposed Output PS Voltage (V)                             | 95           |  |  |  |  |
| Proposed Output PS Power (kVA)                             | 26,6         |  |  |  |  |
| WATER COOLING                                              |              |  |  |  |  |
| Number of pancake per pole                                 | 6            |  |  |  |  |
| Number of Turn per pancake                                 | (10 H 2 V)   |  |  |  |  |
| ΔT water (°C)                                              | 15           |  |  |  |  |
| Maximum Water flow (m <sup>3</sup> /s)                     | 3,44E-04     |  |  |  |  |
| Maximum Water velocity (m/s)                               | 1,21         |  |  |  |  |
| Maximum ΔP (bar)                                           | 3,82         |  |  |  |  |



| IRON     |          |            |      |             |      |  |
|----------|----------|------------|------|-------------|------|--|
| V (mm3)  | PACK FAC | d (kg/dm3) |      | Weight (kg) |      |  |
| 3,99E+08 | 1        |            | 7,86 |             | 3140 |  |
| COILS    |          |            |      |             |      |  |
| V (mm3)  | FILL FAC | d (kg/dm3) |      | Weight (kg) |      |  |
| 9,5E+07  | 0,599    |            | 8,9  |             | 506  |  |





## Quadrupoles









## **Second line diagnostics**



M28 (Ultimate) sensor glued and bonded on the hole of the PCB (2x2 cm area, thickness 50 μm)





Beam

- 4 M28 setup tested on beam
- DAQ working







### **Second line diagnostics**



# 1X vs Sensor 2 # CLUSIZ-A/BZ.GNALAN/92-8/94Fack 2 T CLUSIZ-A/BZ.ova.CLU





# D15.4



Considering the time margin needed for:

- Magnetic measurements (in house to speed up delivery time)
- Installation
- Commissioning of the new line

In addition, DAFNE collider run has been extended by three months (from Dec. '17 to end of Mar. '18), also shifting maintenance schedule of the complex in the next months.

Move the deliverable from M30 to M35



