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LGAD modeling and production points

This talk covers two topics:

« Important R&D points for the next production of LGAD
Do we have a model that fits the LGAD data collected so far?
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Structures for AIDA production - |

Thicknesses: 50 micron, 25 micron

Array of diodes: with various sizes 1x1 mm?2, 2x2 mm?2 pads to study

edge termination.

= Very important to study the electrical properties of structures with

many pads

= Very important to increase the fill factor, need to reach > 95%
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Structures for AIDA production - |

Using p-spray instead of p stops?

Short/long strips: can we design small pitch stripse What is the

minimum from design consideration?

AC coupling strips: can we use polysilicon resistorse

PIN diodes with gain: Can we do it? PIN diode going to 800V when
iradiatede

Breakdown after irradiation (fo compensate for loss of gain layer):
How we can reach very high voltages after irradiation?

= Does it matter the guard rings/number geometry?
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Modeling the properties of LGAD

In the last two years we achieved a good understanding of the LGAD
design

« Do we have a single models that fits LGAD - PiIN datae
« Gain vs Vbias, Gain vs Temperature

Models for gain in LGADs

« Parameterization of acceptor removal
« Pulse shape inirradiated LGAD

« Discussion points in LGAD production
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Models for gain in LGAD

We compared several models with measurements

Two models:

 Van - Oversiraeten

 Massey [2]

use the standard Chynoweth law for the impact ionization rate

while two other models

- Bologna

- Okuto

use their own parameterization

[1] TDAC Sentaurus manual

[2] Massey, D. J., J. P.R. David, and G. J. Rees, Temperature dependence of impact
ionization in submicrometer silicon devices., IEEE Transactions on Electron Devices 53.9
(2006) 2328

Note: models are taken with default parameters from the TCAD manual
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50 micron Gain vs Bias Voltage: CNM - HPK

WF2 reproduces

fairly well the Gain £
vs Bias behavior.
Overall, the gain is
rather “flat” with
Vbias.
Okuto and Massey
models provide a ¢
O

good fit to the
data (using default
settings)
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50 micron PIN diode gain

50 micron PIN diode gain at 253 K and pion irradiated LGAD

6.0 r

= =WF2: Massey
° H Pion 1.5e15
Gain model should also < wl
© L
. . U i )
reproduce PiN behavior ; ’
20 | n’
: n l——-!”/’
0.0 . *

0 100 200 300 400 500 600 700 800 900 1000
V Bias [V]

50 micron PIN diode gain at 253 K

Gain

200 r
0.0 — WF2: Deep doping, Bologna
=+ WF2: Deep doping, van Ovestraeten
15.0
= —WF2: Deep doping, Massey
------ WF2: Deep doping, Okuto ‘
10.0 | 4
/
/
5.0 !
'd / .
0.0 .

0 100 200 300 400 500 600 700 800 900 1000
V Bias [V]

Interestingly, only two models, Massey, van Overstreaten, predict the
onset of internal multiplication up to 850 V in PIN diodes at 253 K
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Gain
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Gain vs Temperature

Gain dependance as a function of Temperature
FBK, 300-micron thick sensor, Vbias = 500 V
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Gain vs Irradiation - neutron

This plot contains a massive amount of information (CNM R?088).
Can we have a model for thise

Can we explain the evolution of Vbias @ gain = 10 as a function of
radiation?
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. WF2 prediction for Vbias to have gain = 10

Bias voltage to obtain Gain ~ 10 as a function of fluence
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Okuto’s model: good fit when bulk gain is not important
Massey: correct mix of gain from bulk and p+ layer
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Massey’'s model: contribution from bulk gain

Bias voltage to obtain Gain ~ 10 as a function of fluence
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At fluences >~ 10'> neq/cm?, bulk gain becomes important
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As we go to highly irradiated sensors,
the gain in bulk becomes important.
Does it matter?
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The signal shape does not change much:

« Therise time becomes a bit shorter

+ Gain electrons ( generated in the bulk) are
contributing
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Signal rise time In iradiated sensors

Remarkably, the decrease of signal rise time with increasing fluence
has been measured (UCSC), and it compares well with WF2
(WF2 rescaled by 0.9 as the amplifier simulation is not perfect)
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Conclusion

We have compared measured data with 4 simulation models for 3
quantities: (i) Gain vs Vbias (LGAD), (ii) vs Temperature (LGAD) and (iii)
vs Vbias (PIN) and found that only the Massey model is able to fit

correctly all of them.
WF2 with a parameterization using Gregor's data on Initial Acceptor
removal rate is able to correctly simulate the evolution of gain vs

fluence.

The evolution of the pulse shape with fluence is well explained by CCE,
the onset of gain in the bulk and the decrease of gain in the gain layer.

The contribution of charge non uniformity to time resolution decreases
with increasing gain in the bulk.
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