Status and Prospects of SuperKEKB

Hiroshi Kaji (KEK) on behalf of SuperKEKB

Accelerators and Flavor Physics

Neutrino mixing is tribimaximal.

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

However neutrino interaction is rare. We need strong neutrino source (and large target). Strong proton driver is necessary.

Quark mixing is diagonal.

$$U_{CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 - A^{2}\lambda^{2}/2 & A\lambda^{2} \\ 0 & -A\lambda^{2} & 1 - A^{2}\lambda^{2}/2 \end{pmatrix} \begin{pmatrix} 1 & 0 & A\lambda^{3}(\rho - i\eta) \\ 0 & 1 & 0 \\ A\lambda^{3}(\rho - i\eta) & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 - \lambda^{2}/2 & \lambda & 0 \\ -\lambda & 1 - \lambda^{2}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Mixing is rare.

We need a lot of collisions.

Large luminosity collider is necessary.

Strong accelerators are necessary for future flavor physics.

<u>History of Luminosity Frontier</u>

SuperKEKB aims 40 times larger luminosity.

<u>SuperKEKB</u>

SuperKEKB and KEK

Machine Parameters

	KEKB achieved	SuperKEKB design	
Energy (electron/positron)	8.0/3.5 GeV	7.0/4.0 GeV	
Current (electron/positron)	1.6/1.2 A	3.6/2.6 A	
Crossing angle	22 mrad	83 mrad	
Number of bunches	1584	2500	
ε _x	24/18 nm	1.7/3.2 nm	
β _y *	5.9/5.9 mm	0.42/0.27 mm	
ξγ	0.09/0.13	0.09/0.09	
σγ	0.94 μm	0.059 μm	
σ	~6 mm	5/6 mm	
Luminosity	$2.11 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	$8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$	

Idea of Luminosity Upgrade

20 times suppression of Twiss parameter: β_v

Note the condition $\sigma_y = \sqrt{\varepsilon_y \beta_y}$ is satisfied if the beam and accelerator optics are well matched.

5.9 mm (KEKB)	\Rightarrow 0.42 mm (SuperKEKB)	for electron
5.9 mm	⇒ 0.27 mm	for positron

2 times larger beam current: /

1.64 A (KEKB)	\Rightarrow 3.6 A (SuperKEKB)	for electron
1.19 A	⇒ 2.6 A	for positron

Schedule of SuperKEKB

Phase-1 operation is carried out successfully from February 2016 to June 2016. Now we are working on the MR renovation and DR construction simultaneously. Next target date is **November 20th, 2017** for starting DR commissioning. Second MR operation with Belle II will be scheduled in early 2018. Physics run will start in the end of 2018.

Achievements in Phase-1

Smooth starting up

- First beam is injected into positron ring on Feb 8th.
- Positrons are successfully stored on Feb 10th.
- First beam is injected into electron ring on Feb 22nd.
- Electrons are successfully stored on Feb 26th.

Vacuum scrubbing

- suppress radiation and raise beam current
- Temperature monitoring

Beam Tuning

- BPM commissioning
- Optics correction

Two Kinds of Operations

<u>File</u> <u>E</u>dit Plot Print <u>W</u>indow

04/02/2016 17:01:32 Help -

Vacuum scrubbing with high current

- Enlarge emittance
- Turn on feedback system

Beam tuning with low current

- without Continuous Closed Orbit Distortion Correction (CCC)

Vacuum history

- Max. beam current: 1010 mA
- Avg. Pressure: ~ 1x10⁻⁶ Pa
- Lifetime: ~ 60 min.

- Base pressure: ~3x10⁻⁸ Pa
- Max. beam current: 870 mA
- Avg. Pressure: ~ 1x10⁻⁷ Pa
- Lifetime ~ 200 min.

Photon Stimulated Desorption Coefficient

Target value: $\eta = 1 \times 10^{-6}$ molecules/photon for both rings

 $\eta = 6 \times 10^{-6}$ molecules/photon

One order better than target value

 $\eta = 1 \times 10^{-7}$ molecules/photon

Temperature Monitoring

Temperature rise is carefully monitored for newly installed components. They are no problem.

Various types of MO flange

2-4 degree rise@1010mA

Bellows chamber for beam pipes with antechambers

1-2 degree rise@1010mA

Gate valve for beam pipes with antechambers

2-5 degree rise@1010mA

BPM Check and Beam Based Alignment

Beam tuning is started from the check of Beam Position Monitors (BPMs).

- cable connection
- gain calibration

Beam Based Alignment

- steering beam to the center of quadrupole magnet
- It becomes the reference of closed orbit distortion correction.
- So called golden orbit.

XY-coupling Correction

Beam is horizontally kicked and effects on vertical beam position are measured. Then we tune beam to suppress XY-coupling.

Suppression of XY-coupling

Lambertson-septum magnet installed on dump beam line affects storage beam line.

Its leaked magnetic field makes XY-coupling.

We put permanent magnet on storage beam line to cancel this leaked magnetic field.

Dispersion Correction

Dispersion: η_x , η_y Note, $\Delta x = \eta_x \cdot (\Delta p_x/p_x)$, $\Delta y = \eta_y \cdot (\Delta p_y/p_y)$

 $\Delta \eta$ is size of correction by feedback system. \Rightarrow We can evaluate stability of beam from $\sigma(\Delta \eta)$.

Summary of Optics Correction

	Positron Ring	Electron Ring	КЕКВ
σ(Δy)/σ(Δx)	0.009	0.006	
$σ(\Delta \beta_x / \beta_x), \sigma(\Delta \beta_y / \beta_y)$	0.03, 0.03	0.03, 0.03	0.03-0.06
σ(Δη _x), σ(Δη _y)	8, 2.1 (mm)	11, 2.3 (mm)	~10 (mm)
Δξ _x , $Δ$ ξ _y	2, -4	<1, <1	

In terms of β and η functions,

The size of correction is same level as those in the KEKB period.

We realize the stable beam orbit with phase-1 beam tuning.

Preparation for Phase-2

Renovation of Main Ring

- Installation of Final Focus Quadrupole Magnet (QCS)
- Installation of new beam collimators

Construction of Damping Ring

- New tunnel and accelerator
- Circumference 135.5m
- Storage energy 1.1 GeV
- For suppress beam emittance

 $ε_x$: 1400⇒42.9 (nm), $ε_y$: 1400⇒3.61 (nm) (Note, beam size: $σ_{x,y} = \sqrt{ε_{x,y}β_{x,y}}$)

Final Focus Quadrupole Magnet

We will install Final Focus Quadrupole Magnet (QCS) to realize 20 times smaller vertical beam size at interaction point.

It consists of:

- 8 superconducting quadrupole magnets
- 43 superconducting cancel magnet
- 4 superconducting solenoid magnets

QCS Installation Status

Right side of QCS (electron upstream) has been assembled.

Left side of QCS (positron upstream) has already been installed.

New Collimators

New low-impedance collimators are developed and installed.

Two horizontal collimators were installed at arc section of positron ring. ⇒ Performance with beam is checked.

We plan to install 6 more collimators for both rings.

Short Summary of Damping Ring Construction

- Construction of tunnel
- Construction of power supply building
- ☑ Installation of cables for power supply and BPM
- ✓ Installation of magnets
- ✓ Installation of power supplies for magnet
- Installation of vacuum chambers for arc section
- Coarse alignment of magnets
- □ RF cavities and klystrons
- □ Septum and kicker magnets
- □ Beam instrumentation (BPM etc...)
- □ Vacuum chamber for straight section and BT
- □ Fine alignment of magnets

Pictures of tunnel

Magnets for injection/extraction

Septum magnets for injection/extraction: Magnets and pulsers are assembled. Magnetic field measurement is ongoing.

Kicker system for injection/extraction: Magnets and power supply are delivered.

Conclusion

SuperKEKB aims 40 times larger luminosity than that of KEKB.

- It will be the new world's luminosity record.
- Luminosity is enhanced from:
 - 20 times suppression of β_v
 - 2 time increase of beam current.

Phase-1 operation is carried out successfully.

- We increased beam current to be 1010 mA (e⁺) and 870 mA (e⁻).
- Beam tuning is carried out successfully. Both beams are operated with stable orbit.

Preparation for phase-2 is ongoing.

- One side of final focus quadrupole magnet is installed.
- The other side is assembled and will be installed soon.
- Construction of damping ring is ongoing.