MDI meeting, CERN 12/12/16

Full simulation study of e⁺e⁻ pairs and of LumiCal performance

N. Bacchetta, K. Elsener, A. Kolano, E. Leogrande, E. Perez, N. Tehrani, <u>Y. Voutsinas</u>

Outline

FCCee detector model

Software

Simulation / reconstruction of e⁺e⁻ pairs

- Estimation of hit density & occupancy

First look at LumiCal performance

From CLIC detector ...

The CLIC detector

- Full Silicon tracking
 - Pixel VXD
 - Inner/Outer trackers with elongated pixels (strip-like)
- B=4T
- Calorimeters inside the solenoid

... to FCCee detector

Adaptation of the CLIC detector

Implementation in DD4hep from Emmanuel

IR

- Following Mike Sullivan design
- $L^* \sim 2.2m$, LumiCal closer (~1m) to the IP, no BeamCal
- Beam pipe radius at 2cm made of 0.5 mm Be
- Ta shield of 0.5 mm around BP apart of the central region (|Z| < 25 cm)
 - Respective changes to VXD, innermost layer at 2.2cm

Magnetic field

- 2T main field
- + fields from shielding and compensating solenoids

Software framework

We currently use ILCSoft

- Mature & validated software tools

Detector description & simulation in dd4hep

- Realistic description
 - Support & services (cabling, cooling etc) are included
- No segmentation in pixels / strips
 - We deal with this only in digitisation level

Marlin processors for digitisation / reconstruction

Digitisation

- Gaussian smearing according to sensor's resolution (technology agnostic)

Various pattern recognition algorithms

- For the time being we use a track cheater

Overlay processor

 Merges "physics event" hit collections with pairs, according to each subdetector readout time

Pairs generation with Guinea Pig

Guinea Pig is an e^+e^- beam-beam interaction generator

- Output file with the 4-vectors of the produced pairs

~300 BXs at Z peak (Ecm=91.2GeV) and 135 BXs at top (Ecm=350GeV)

- Top: 4000 pairs / BX, ~4 TeV of energy
- Z: ~ 350 pairs / BX, < 500 GeV of energy

Focus on Ecm = 350 GeV in these slides

Pairs induced occupancy for $E_{cm} = 350 \text{ GeV}$

~ 70 hits / BX at innermost VXD layer

Some remarks on occupancy calculation

- 20x20 µm² pixels in VXD, 0.024x10 mm² in tracker
- Assumed time resolution of 1BX
- Assumed cluster multiplicity of 1
 - Underestimation of occupancy
 - Can reach 0.6 % at ITE D1 for multiplicity ~ 3

Origin of the pairs - induced hits

Most of the hits on forward trackers are coming from secondaries

Largest source of secondaries is the beam splitting region, at $Z \sim 1m$

Reconstructed tracks from e⁺e⁻ pairs

Ideal pattern recognition (uses MC info from hits)

Ecm = 350 GeV

Time resolution of VXD / trackers <u>1BX</u>

Tracking can give us an extra handle in understanding the effect of pairs

 Pairs might be an issue if a tracking with high purity and efficiency at very low P_τ (< 100 MeV) is required

LumiCal study

Generation of bhabha events using BHWIDE

Full simulation with DD4hep (adapted fron CLIC det)

Reconstruction using CLIC clusterer

Objectives so far

- Impact of small L*
- Effect of Tantalum shield on resolution
- Effect of pair bkg

Comparison with ILD LumiCal

	ILD	FCC	
Inner R	80 mm	55.7 mm	
Outer R	195.2	190	
Min Z	2500	1090	
Max Z	2630	1290	

LumiCal resolution & Ta shield

Ta shield significantly degrades LumiCal resolution

Important improvement if we remove the shield of the largest part of central BP

- Nominal shield at central BP: 25 cm 100 cm
- Modified one: 81 cm 100 cm

Preliminary studies, further optimisation could be possible

Preliminary conclusions

Very low (~10⁻⁵ – 10⁻⁶) occupancy for \sqrt{s} 91.2 GeV For \sqrt{s} 350 GeV, occupancy can go at per mil level at forward trackers However pairs shouldn't be considered as a negligible bkg

- \sqrt{s} 91.2 GeV: 2.5 (7.5) ns BX spacing \rightarrow very fast detectors
- Cluster multiplicities were not accounted for
- Accumulation of hits from various bkg sources
- Simulation uncertainty
- Etc...

So pairs might be a worry, depending on what physics we want to do Lumical

- Small $L^* \rightarrow$ relatively low statistics
- Ta shield has a non marginal impact on resolution
- Pairs seems to degrade LumiCal's resolution
 - Degradation possibly could be alleviated via the clusterer optimisation

backup

LumiCal resolution & pair bkg

 \underline{Very} preliminary results

Effect of pairs should be partially alleviated after optimisation of the clusterer

