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A construction of the BPS monodromy for theories of class S,
directly from the Coulomb branch geometry

I Does not involve knowledge of the BPS spectrum

I Manifest wall-crossing invariance

I Topological nature and symmetries of the superconformal index
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4d N=2 Wall Crossing

The d = 4, N = 2 super-Poincaré algebra s = s0 ⊕ s1

s0 = iso(1, 3)⊕ su(2)R ⊕ u(1)R ⊕C
s1 = (2, 1; 2)+1 ⊕ (1, 2; 2)−1

encodes the BPS bound
M ≥ |Z |

BPS states are massive representations saturating this bound

M |ψ〉 = |Z | |ψ〉 , Qϑ |ψ〉 = 0 (ϑ = ArgZ)

when BPS states interact, they can form BPS boundstates

Ebound = |Z1 + Z2| − |Z1| − |Z2| ≤ 0

these become marginally stable when

Z1//Z2
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4d N=2 quantum field theories

I Coulomb branch B of vacua: G → U(1)r

I Quantized e.m. charges γ ∈ Γ ' Z2r , with Z-valued DSZ pairing 〈 · , · 〉
I Zγ is topological and linear in γ [Olive-Witten]

The IR dynamics is encoded by a family (Σu, λu) of Riemann surfaces and
differentials over B [Seiberg-Witten]

Γu ' H1(Σu,Z) Zγ(u) = 1
π

∮
γ
λu

Zγ(u) is meromorphic in u ∈ B, walls of
marginal stability divide B into chambers

MS(γ, γ′) := {u ∈ B | Zγ(u)//Zγ′(u)}

Wall crossing: BPS boundstates can
form/decay, the BPS spectrum must be
determined chamber-wise.
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Wall Crossing Formulae [Cecotti-Vafa, Denef-Moore, Kontsevich-Soibelman, Joyce-Song,

Manschot-Pioline-Sen, Gaiotto-Moore-Neitzke]

The Kontsevich-Soibelman wall crossing formula

I BPS multiplets: [(1/2, 0)⊕ (0, 1/2)]⊗ h, with h = (j , jR) of so(3)⊕ su(2)R

I Counted by a protected spin character:

Ω(γ, u; y) = Tr hγ y
2J3 (−y)2R3 =

∑
m∈Z

am(γ, u) · (−y)m

where |am(γ, u)| counts |γ,m〉

I Quantum torus algebra: XγXγ′ = y 〈γ,γ
′〉Xγ+γ′

Jumps of the BPS spectrum are controlled by an ArgZγ-ordered product of
quantum dilogarithms

ArgZ(u)↗∏
γ,m

Φ((−y)mXγ)am(γ,u) =

ArgZ(u′)↗∏
γ′,m′

Φ((−y)m
′
Xγ′)

am′ (γ
′,u′) ≡ U
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Motivation

I The BPS monodromy U is of central importance in wall crossing. It is also
a spectrum generating function, BPS state counting follows from
knowledge of U [Kontsevich-Soibelman, Gaiotto-Moore-Neitzke, Dimofte-Gukov].

I Relation to various specializations of the superconformal index
[Cecotti-Neitzke-Vafa, Iqbal-Vafa, Cordova-Shao, Cecotti-Song-Vafa-Yan].

I Graphs encoding U are an important link in the Network/Quiver
correspondence
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Surface Defects

Surface defects are good probes of BPS spectra and phases of wall-crossing in
4d N=2 theories [Gaiotto-Moore-Neitzke]

2d-4d system

I 2d N=(2,2) theory on R1,1 ⊂ R1,3

I chiral matter transforming under a global symmetry G

I 4d vectormultiplets couple to 2d chirals, gauging G

I Adjoint 4d scalars give masses for 2d chirals, 2d theory is massive with
effective superpotential W̃ (u) controlled by 4d Coulomb moduli

I Finite number of massive vacua, with solitons interpolating between them
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Example: U(1) GLSM with a charged chiral doublet of SU(2) global symmetry,
coupled to 4d SU(2) SYM

I On the 4d Coulomb branch 〈Φ〉 breaks SU(2)→ U(1)4d , and generates
masses for 2d chiral multiplets

I Effective theory of the 2d field-strength σ

W̃ = t σ − Tr (σ + Φ) log(σ + Φ)/e

I 4d quantum dynamics [Gaiotto-Gukov-Seiberg]

∂2
σW̃ =

〈
Tr

1

σ + Φ

〉
⇒ ∂σW̃ = t − arcosh

(
σ2 − u

2Λ2

)

I 2d chiral ring equations coincide with SU(2) SYM Seiberg-Witten curve,
presented as a 2-fold ramified covering π over the t-plane (FI-θ coupling)

I Discrete set of massive vacua π−1(t) ∈ Σu: one per sheet σi (t, u)

I A defect vacuum is a source of U(1)4d monodromy for 4d IR gauge field,
similar to flux in a solenoid [Gukov-Witten]
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2d-4d BPS states

New soliton field configurations of 2d and 4d d.o.f. introduced by the defect

I a 2d topological charge (ij) for σi (t, u)→ σj(t, u)

I a 2d flavor charge γ ∈ Γ, corresponding to 4d gauge charge

I space-dependent monodromy for 4d U(1)r gauge fields: boundary values
classified by (ij), profile classified by γ

BPS equations ∂x1σ = α · ∂σW̃ with slope α = ∆W̃ /|∆W̃ |,

Zij,γ(t, u) = W̃j(t, u)− W̃i (t, u) + Zγ(u)
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2d-4d Wall Crossing

2d wall crossing: vacua σi depend on t, so does Zij = W̃j − W̃i .
Marginal stability when Zij//Zjk , 2d spectrum jumps [Cecotti-Vafa]

Zij//Zjk

(ij) + (jk)→ (ik)

In 2d-4d systems a new kind of boundstate appears: pure flavor in 2d, gauge
charge in 4d [Hanany-Hori]

(ij , γ′) + (ji , γ′′)→ (ii , γ) ∼ γ

2d-4d mixing: Boundstates of solitons of opposite type mix with 4d BPS
states, in this way the surface defect probes the 4d BPS spectrum
[Gaiotto-Moore-Neitzke]

Zij // Zji // Zγ
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2d-4d systems of Class S

Class S theories S[gADE ,C ,D]: twisted compactifications of the 6d (2,0)
theory on the Riemann surface C “UV curve” [Gaiotto, Gaiotto-Moore-Neitzke]

I Coulomb branch geometry is encoded by Hitchin systems [Martinec-Warner,

Gorski-Krichever-Marshakov-Mironov-Morozov, Donagi-Witten] due to their 6d origin
[Gaiotto-Moore-Neitzke]

I Seiberg-Witten curve identified with spectral curve Σu ⊂ T ∗C , naturally
presented as ramified covering of C

I Canonical surface defect: UV curve C generalizes the FI parameter
space, Σu is the 2d vacuum manifold.

I An theories: M theory engineering by wrapping M5 branes on C × R1,3,
with M2 ending on {z} × R1,1

[Hanany-Hori, Witten, Klemm-Lerche-Mayr-Vafa-Warner,

Tong ...]
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Spectral Networks W(ϑ, u) [Gaiotto-Moore-Neitzke]

Webs of trajectories associated to the covering Σ→ C

Geometric data

I Trajectories from branch points: (∂τ , λj − λi ) = e iϑ (BPS equation)

I New trajectories from joints: (ij) + (jk) = (ik)

Combinatorial data

I Soliton data on each trajectory {(a, µ(a)) | a ∈ H rel
1 (Σu,Z) , µ ∈ Z}

W(ϑ, u) counts 2d-4d BPS states on surface defect at z ∈ C with ArgZa = ϑ

...without any field theory computation: 2d-4d spectrum is determined by W
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Spectral networks carry a natural Lie algebraic structure, underlying the
generalization to ADE theories of class S, and beyond canonical defects [PL-Park]

Cecotti-Vafa wall crossing formula
follows from the Lie bracket

4d BPS spectra from 2d-4d mixing

I Varying ϑ the topology of a network jumps,
inducing wall crossing of 2d-4d BPS spectrum

I Jumps occur when Zij//Zji//Zγ : marginal
stability for 2d-4d mixing

I Finite edges appear at ϑ = ArgZγ
corresponding to 4d BPS states
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1. Formal generating series of 2d-4d BPS states preserving Qϑ [Galakhov-PL-Moore]

F (ϑ, u) =
∑

ij,γ Ω(ϑ, u, ij , γ; y)Xij,γ

2. Piecewise-constant in ϑ, jumps across 4d
BPS rays, at phases ArgZγ [Gaiotto-Moore-Neitzke]

F ′ =
[∏

Φ((−y)mXγ)am
]
F
[∏

Φ((−y)mXγ)am
]−1

3. 4d BPS degeneracies am(γ, u) control jumps in ϑ (at fixed u), Comparing
F (ϑ, u) to F (ϑ+ π, u) gives the whole 4d spectrum:

F (ϑ+ π, u) = UF (ϑ, u)U−1

Can use spectral networks to compute F (ϑ, u), F (ϑ+ π, u) and obtain U
• still choosing a chamber of B and some 4d BPS states
• still impractical: complexity of 2d-4d wall crossing
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Marginal Stability

Let Bc ⊂ B be a locus where central charges of all 4d BPS particles have the
same phase

Bc := {u ∈ B , ArgZγ(u) = ArgZγ′(u) ≡ ϑc(u)}

Because of marginal stability, the 4d BPS spectrum is ill-defined at uc ∈ Bc .

However, the 2d-4d spectrum is still well-defined, because

Zij,γ(t, u) = W̃j(t, u)− W̃i (t, u) + Zγ(u) 6= Zγ(u)

central charges of 2d-4d states are phase-resolved.

At uc ∈ Bc the generating function of 2d-4d Qϑ-BPS states is well defined

F (ϑ, uc) =
∑
ij,γ

Ω(ϑ, uc , ij , γ; y)Xij,γ
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at u : F ′ =
[∏

Φ((−y)mXγ)am(γ,u)] · F · [∏Φ((−y)mXγ)am(γ,u)]−1

at uc : F ′ = U · F · U−1

I F (ϑ, uc) exhibits a single jump at ϑc which captures the full BPS
monodromy

I From the viewpoint of 2d-4d states nothing special happens at the critical
locus: can “parallel transport” both F and F ′ to Bc

I Redefining U as the jump F → F ′, extends its definition to Bc
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U is determined by considering several surface defects at once. Each
contributes F ′ = UF U−1. Both F ,F ′ are computed by spectral networks.

The spectral network at (uc , ϑc) is very special. Several finite edges appear
simultaneously. Within the network a critical graph emerges.

The graph topology, together with a notion of framing, determine U.
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First Example: Argyres-Douglas

The graph has 2 edges, each
contributes an equation

F ′p = UFp U−1

with

Fp1 = 1 + y−1Xγ1 + y−1Xγ1+γ2

Fp2 = 1 + y−1Xγ2

F ′p1
= 1 + y−1Xγ1

F ′p2
= 1 + y−1Xγ2 + y−1Xγ1+γ2

Together, they determine the monodromy

U = 1− y

(y)1

(
Xγ1 + Xγ2

)
+

y 2

(y)2
1

Xγ1+γ2 +
y 2

(y)2

(
X2γ1 + X2γ2

)
+ . . .

= Φ(Xγ1 )Φ(Xγ2 )
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Second Example: SU(2) N = 2∗

The graph has three edges p1, p2, p3;
each contributes one equation

F ′p = UFp U−1

with

Fp1 =
1+Xγ1

+(y+y−1)Xγ1+γ3
+Xγ1+2γ3

+(y+y−1)Xγ1+γ2+2γ3
+Xγ1+2γ2+2γ3

+X2γ1+2γ2+2γ3

(1−X2γ1+2γ2+2γ3 )2

F ′p1
=

1+Xγ1
+(y+y−1)Xγ1+γ2

+Xγ1+2γ2
+(y+y−1)Xγ1+2γ2+γ3

+Xγ1+2γ2+2γ3
+X2γ1+2γ2+2γ3

(1−X2γ1+2γ2+2γ3 )2

Fp2,3 & F ′p2,3
are obtained by cyclic shifts of γ1, γ2, γ3.

The solution:
U =

(∏↗
n≥0 Φ

(
Xγ1+n(γ1+γ2)

))
×Φ (Xγ3 ) Φ ((−y)Xγ1+γ2 )−1 Φ

(
(−y)−1Xγ1+γ2

)−1
Φ (X2γ1+2γ2+γ3 )

×
(∏↘

n≥0 Φ(Xγ2+n(γ1+γ2))
)
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General graph structure

Spectral networks rules constrain the types of graphs that can occur.

Graphs can have two types of nodes: branch points or joints.
Combinatorics of 2d-4d soliton propagation depends on the node type.
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Framing

Fp,F
′
p can be determined from the graph by simple rules, based on

I the topology of a graph

I a framing: a cyclic ordering of edges at each node

Graphs of A1 theories have no
joints, only branch points.
Topology and framing define a
ribbon graph.

To each (Q-algebraic) Riemann surface C is associated a holomorphic map
B : C → P1, with ramification at 0, 1,∞ [Belyi].
The preimage B−1([0, 1]) is a ribbon graph on C , a dessin d’enfants [Grothendieck].
The ribbon graph is the union of critical leaves of a foliation on C by a Strebel
differential [Harer, Mumford, Penner, Thurston, Mulase-Penkava].
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Graph symmetries

Symmetries of a graph: automorphisms preserving both its topology and
framing, they are inherited by U.

These symmetries are often hidden by the Kontsevich-Soibelman factorization
U =

∏
Φ(X ). Instead they become manifest on the graph (Ex. Z3 symmetry

in N = 2∗).

Graph symmetries show that U shares important properties of the
superconformal index.

I Punctures on C encode global symmetries of a Class S theory [Gaiotto,

Chacaltana-Distler-Tachikawa].

I The index is computed by correlators of a TQFT on C
[Gadde-Pomoni-Rastelli-Razamat], it is a symmetric function of the flavor fugacities.

I Symmetries of the graph permute punctures, implying that U is a
symmetric function of the corresponding flavor fugacities, like the index.
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Conclusion

1. To a class S theory associate a canonical “critical graph” on the UV curve,
emerging from a degenerate spectral network at Bc .

2. A new definition of the BPS monodromy, encoded by the topology and
framing of the graph.

3. Does not use BPS spectrum. Manifest invariance under wall-crossing. At
the critical locus Bc the BPS spectrum is ill-defined.

4. Simpler than computing U by using BPS spectra. Symmetries of U are
manifest from the graph.
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Open questions

I Existence conditions for the critical locus Bc where the critical graph
emerges

I Equivalence relations among graphs: different topology, same U on
different components of Bc

I Constructive approach by gluing graphs [Gabella-PL in progress]

I Relation to BPS quivers [Gabella-PL-Park-Yamazaki in progress]

Thank You.
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