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A construction of the BPS monodromy for theories of class S,
directly from the Coulomb branch geometry

» Does not involve knowledge of the BPS spectrum

» Manifest wall-crossing invariance

» Topological nature and symmetries of the superconformal index
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4d N=2 Wall Crossing

The d = 4, N' = 2 super-Poincaré algebra s = 50 @ 51

s0 = iso(1,3) @ su(2Q)r B u(l)r ® C
s1=(2,1;2)11 @ (1,2;2)1

encodes the BPS bound
M > |Z|

BPS states are massive representations saturating this bound

Mgy =1Z]lp),  Qulv)=0 (I = ArgZ)
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4d N=2 Wall Crossing

The d = 4, N' = 2 super-Poincaré algebra s = 50 @ 51

s0 = iso(1,3) @ su(2Q)r B u(l)r ® C
s1=(2,1;2)11 @ (1,2;2)1

encodes the BPS bound
M > |Z|

BPS states are massive representations saturating this bound

Mgy =1Z]lp),  Qulv)=0 (I = ArgZ)

when BPS states interact, they can form BPS boundstates
Ebound - |Zl + ZQ| - ‘Zl| - ‘ZZ| < 0
these become marginally stable when

VAYYPL
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4d N'=2 quantum field theories
» Coulomb branch B of vacua: G — U(1)"
» Quantized e.m. charges v € I ~ Z*", with Z-valued DSZ pairing (-, -)

» Z, is topological and linear in y [Olive-Witten]
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4d N'=2 quantum field theories
» Coulomb branch B of vacua: G — U(1)"
» Quantized e.m. charges v € I ~ Z*", with Z-valued DSZ pairing (-, -)
» Z, is topological and linear in y [Olive-Witten]

The IR dynamics is encoded by a family (X,, A\y) of Riemann surfaces and
differentials over B [Seiberg-Witten]

Mo Hi(X0,Z)  Zy(u) =1 §

Z,(u) is meromorphic in u € B, walls of
marginal stability divide B into chambers

@ MS(v,7") = {u € B | Z,(u)//Zy(u)}

cu / : u
B MS(v,7)
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4d N'=2 quantum field theories
» Coulomb branch B of vacua: G — U(1)"
» Quantized e.m. charges v € I ~ Z*", with Z-valued DSZ pairing (-, -)
» Z, is topological and linear in y [Olive-Witten]

The IR dynamics is encoded by a family (X,, A\y) of Riemann surfaces and

differentials over B [Seiberg-Witten]

Mo Hi(X0,Z)  Zy(u) =1 §

Z,(u) is meromorphic in u € B, walls of
marginal stability divide B into chambers

\/ \V% | MS(v.7) = {u € B| Z,(u)//Z,(u)}

Wall crossing: BPS boundstates can
/ form/decay, the BPS spectrum must be
B MS(v.v)

determined chamber-wise.
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Wall CrOSSing Formulae [Cecotti-Vafa, Denef-Moore, Kontsevich-Soibelman, Joyce-Song,

Manschot-Pioline-Sen, Gaiotto-Moore-Neitzke]

The Kontsevich-Soibelman wall crossing formula
» BPS multiplets: [(1/2,0) @ (0,1/2)] ® b, with h = (j, jr) of s0(3) B su(2)r

» Counted by a protected spin character:

Qv,u;y) = Try, y* 2 (=y)*® = an(v,u) - ()"

meZ

where |am(7v, u)| counts |y, m)

> Quantum torus algebra: X, X, = y”’”,)Xyﬂ,
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Manschot-Pioline-Sen, Gaiotto-Moore-Neitzke]

The Kontsevich-Soibelman wall crossing formula
» BPS multiplets: [(1/2,0) @ (0,1/2)] ® b, with h = (j, jr) of s0(3) B su(2)r

» Counted by a protected spin character:

Qv,u;y) = Try, y* 2 (=y)*® = an(v,u) - ()"

meZ

where |am(7v, u)| counts |y, m)
> Quantum torus algebra: X, X, = y”’”,)Xﬂ,H,

Jumps of the BPS spectrum are controlled by an Arg Z,-ordered product of
quantum dilogarithms

ArgZ(u) ArgZ(u") , o
[T o) = [T o= x)=
y,m ,Y/’m/
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The Kontsevich-Soibelman wall crossing formula
» BPS multiplets: [(1/2,0) @ (0,1/2)] ® b, with h = (j, jr) of s0(3) B su(2)r

» Counted by a protected spin character:

Qv,u;y) = Try, y* 2 (=y)*® = an(v,u) - ()"

meZ

where |am(7v, u)| counts |y, m)
> Quantum torus algebra: X, X, = y”’”,)Xﬂ,H,

Jumps of the BPS spectrum are controlled by an Arg Z,-ordered product of
quantum dilogarithms

ArgZ(u) ArgZ(u") , o
[T eyt = I e=n"x)m o = u
y,m ,Y/’m/
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Motivation

» The BPS monodromy U is of central importance in wall crossing. It is also
a spectrum generating function, BPS state counting follows from
knowledge Of U [Kontsevich-Soibelman, Gaiotto-Moore-Neitzke, Dimofte-Gukov].

> Relation to various specializations of the superconformal index
[Cecotti-Neitzke-Vafa, Igbal-Vafa, Cordova-Shao, Cecotti-Song-Vafa-Yan].

» Graphs encoding U are an important link in the Network/Quiver
correspondence
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© 2d-4d Wall Crossing
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Surface Defects

Surface defects are good probes of BPS spectra and phases of wall-crossing in
4d N'=2 theories [Gaiotto-Moore-Neitzke]

2d-4d system

>

>

>

2d N'=(2,2) theory on R"! C R'?
chiral matter transforming under a global symmetry G
4d vectormultiplets couple to 2d chirals, gauging G

Adjoint 4d scalars give masses for 2d chirals, 2d theory is massive with
effective superpotential W(u) controlled by 4d Coulomb moduli

Finite number of massive vacua, with solitons interpolating between them
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Example: U(1) GLSM with a charged chiral doublet of SU(2) global symmetry,
coupled to 4d SU(2) SYM

» On the 4d Coulomb branch (®) breaks SU(2) — U(1)sq, and generates
masses for 2d chiral multiplets

> Effective theory of the 2d field-strength o

W =to—Tr(oc+ ®)log(c + D) /e

> 4d quantum dynamics [Gaiotto-Gukov-Seiberg]

—~ c?—u
> = 0, W =t — arcosh (W)

2 1
W= (T
% < Yot o

» 2d chiral ring equations coincide with SU(2) SYM Seiberg-Witten curve,
presented as a 2-fold ramified covering 7 over the t-plane (FI-6 coupling)
» Discrete set of massive vacua 7~ !(t) € ¥,: one per sheet o;(t, u)

> A defect vacuum is a source of U(1)sg monodromy for 4d IR gauge field,
similar to flux in a solenoid [Gukov-Witten]
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2d-4d BPS states

New soliton field configurations of 2d and 4d d.o.f. introduced by the defect
> a 2d topological charge (ij) for oi(t, u) — oj(t, u)
» a 2d flavor charge v € I', corresponding to 4d gauge charge

» space-dependent monodromy for 4d U(1)" gauge fields: boundary values
classified by (ij), profile classified by v

o
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2d-4d BPS states

New soliton field configurations of 2d and 4d d.o.f. introduced by the defect
> a 2d topological charge (ij) for oi(t, u) — oj(t, u)
» a 2d flavor charge v € I', corresponding to 4d gauge charge

» space-dependent monodromy for 4d U(1)" gauge fields: boundary values
classified by (ij), profile classified by v

BPS equations 8,0 = « - 9. W with slope @ = AW/|AW|

Zij~(t,u) = /VVj(t, u) — W(t, u)+ Z,(u)

o
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2d-4d Wall Crossing

2d wall crossing: vacua o; depend on t, so does Z; = WJ - W
Marginal stability when Zj;//Zj, 2d spectrum jumps [Cecotti-Vafa]

k . k

f 7 Zi/ | Zi
J 7 (if) + (k) — (i)
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2d-4d Wall Crossing

2d wall crossing: vacua o; depend on t, so does Z; = WJ - W
Marginal stability when Zj;//Zj, 2d spectrum jumps [Cecotti-Vafa]

17 Zij/ | Zi
i (i) + (jk) — (ik)

In 2d-4d systems a new kind of boundstate appears: pure flavor in 2d, gauge
charge in 4d [Hanany-Hori]

(i,7) + Gi,7") = (ii,7) ~ v

2d-4d mixing: Boundstates of solitons of opposite type mix with 4d BPS
states, in this way the surface defect probes the 4d BPS spectrum

[Gaiotto-Moore-Neitzke]

Zi /] Zi ] Zy
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© Spectral Networks in a Nutshell
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2d-4d systems of Class S

Class S theories S[gape, C, D]: twisted compactifications of the 6d (2,0)
theory on the Riemann surface C "UV curve” [Gaiotto, Gaiotto-Moore-Neitzke]

» Coulomb branch geometry is encoded by Hitchin systems [Martinec-Warner,
Gorski-Krichever-Marshakov-Mironov-Morozov, Donagi-Witten] due to their 6d origin

[Gaiotto-Moore-Neitzke]

» Seiberg-Witten curve identified with spectral curve ¥, C T*C, naturally
presented as ramified covering of C

» Canonical surface defect: UV curve C generalizes the Fl parameter
space, X, is the 2d vacuum manifold.

> A, theories: M theory engineering by wrapping M5 branes on C x R!3,
with M2 ending on {z} x R™! [Hanany-Hori, Witten, Klemm-Lerche-Mayr-Vafa-Warner,
Tong ...]
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Spectral Networks W(1, 1) [Gaiotto-Moore-Neitzke]

Webs of trajectories associated to the covering ¥ — C

Geometric data
» Trajectories from branch points: (9r,\j — A;) = €'’ (BPS equation)
> New trajectories from joints: (ij) + (jk) = (ik)

Combinatorial data
» Soliton data on each trajectory {(a, u(3))|a € H{ (X4, Z),pn € Z}

W(¥, u) counts 2d-4d BPS states on surface defect at z € C with ArgZ, =¥
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Spectral Networks W(1, 1) [Gaiotto-Moore-Neitzke]

Webs of trajectories associated to the covering ¥ — C

Geometric data
» Trajectories from branch points: (9r,\j — A;) = €'’ (BPS equation)
> New trajectories from joints: (ij) + (jk) = (ik)

Combinatorial data
» Soliton data on each trajectory {(a, u(3))|a € H{ (X4, Z),pn € Z}

W(¥, u) counts 2d-4d BPS states on surface defect at z € C with ArgZ, =¥
...without any field theory computation: 2d-4d spectrum is determined by WV
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Spectral networks carry a natural Lie algebraic structure, underlying the
generalization to ADE theories of class S, and beyond canonical defects [pL-Park]

@ Z L8 Cecotti-Vafa wall crossing formula
></3 > é 8 follows from the Lie bracket

P. Longhi CERN - 24-01-2017 16 / 31



Spectral networks carry a natural Lie algebraic structure, underlying the
generalization to ADE theories of class S, and beyond canonical defects [pL-Park]

“ “ +B Cecotti-Vafa wall crossing formula
></>’ ><’/? follows from the Lie bracket

4d BPS spectra from 2d-4d mixing

» Varying 9 the topology of a network jumps,
inducing wall crossing of 2d-4d BPS spectrum

» Jumps occur when Z;//Z;//Z,: marginal
stability for 2d-4d mixing

> Finite edges appear at ¥ = ArgZ,
corresponding to 4d BPS states
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1. Formal generating series of 2d-4d BPS states preserving Qy [Galakhov-PL-Moore]

F(197 Ll) = Zij,ry 9(197 u, ijv Vs y) XU»’Y
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1. Formal generating series of 2d-4d BPS states preserving Qy [Galakhov-PL-Moore]

F(’l97 U) = Zij,—y 9(197 u, ija Vs y) XU»’Y

A 4 Particles
2. Piecewise-constant in ¥, jumps across 4d f
BPS rays, at phases Arg Z, [Gaiotto-Moore-Neitzke]

F = [[Te(»xy] F [[Tenmx)]

Anti Particles
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1. Formal generating series of 2d-4d BPS states preserving Qy [Galakhov-PL-Moore]

F(197 U) = Zij,—y 9(197 u, ija Vs y) XU»’Y

A 4 Particles

2. Piecewise-constant in ¥, jumps across 4d ﬁf
BPS rays, at phases Arg Z, [Gaiotto-Moore-Neitzke]

F = [[Te(»xy] F [[Tenmx)]

Anti Particles

3. 4d BPS degeneracies am(+y, u) control jumps in 9 (at fixed u), Comparing
F (¥, u) to F(¢¥ + m, u) gives the whole 4d spectrum:

F(9+m,u)=UFW,u)U’

Can use spectral networks to compute F (¥, u), F(¢ + 7, u) and obtain U
o still choosing a chamber of B and some 4d BPS states
e still impractical: complexity of 2d-4d wall crossing
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© Marginal Stability and Monodromies
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Marginal Stability

Let Bc C B be a locus where central charges of all 4d BPS particles have the
same phase

Be:={ueB, ArgZ,(u) =ArgZ,(u) =V(uv)}

Because of marginal stability, the 4d BPS spectrum is ill-defined at u. € Bc.
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same phase

Be:={ueB, ArgZ,(u) =ArgZ,(u) =V(uv)}

Because of marginal stability, the 4d BPS spectrum is ill-defined at u. € Bc.

However, the 2d-4d spectrum is still well-defined, because
Zij(t,u) = Wi(t,u) — Wi(t, u) + Zy(u) # Zy(u)

central charges of 2d-4d states are phase-resolved.
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Marginal Stability

Let B. C B be a locus where central charges of all 4d BPS particles have the
same phase

Be:={ueB, ArgZ,(u) =ArgZ,(u) =V(uv)}

Because of marginal stability, the 4d BPS spectrum is ill-defined at u. € Bc.

However, the 2d-4d spectrum is still well-defined, because
Zij~(t,u) = Wi(t, u) — Wi(t, u) + Zy(u) # Zy(u)
central charges of 2d-4d states are phase-resolved.
At uc € B. the generating function of 2d-4d Q»-BPS states is well defined

F(ﬁ7 UC) = Zﬂ(ﬂa UC7U7’Y:y)X"J'7’Y

i,y
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at u :

at uc :

> F(¥, uc) exhibits a single jump at 9. which captures the full BPS
monodromy

» From the viewpoint of 2d-4d states nothing special happens at the critical
locus: can “parallel transport” both F and F’ to B.

» Redefining U as the jump F — F’, extends its definition to 5.
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U is determined by considering several surface defects at once. Each
contributes F/ = U FU™. Both F, F’ are computed by spectral networks.

P. Longhi CERN - 24-01-2017 21 /31



U is determined by considering several surface defects at once. Each
contributes F/ = U FU™. Both F, F’ are computed by spectral networks.

The spectral network at (uc,c) is very special. Several finite edges appear
simultaneously. Within the network a critical graph emerges.

P. Longhi CERN - 24-01-2017 21 /31



U is determined by considering several surface defects at once. Each
contributes F/ = U FU™. Both F, F’ are computed by spectral networks.

The spectral network at (uc,c) is very special. Several finite edges appear
simultaneously. Within the network a critical graph emerges.

The graph topology, together with a notion of framing, determine U.

5 OTR
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First Example: Argyres-Douglas

The graph has 2 edges, each
contributes an equation

Fp=UF,U"

yan %
with A

Fop =1 +y71XW1 +y71XW1+W2
Fp, =1 +y_1sz
Flgl = 1+y71X’Y1
F;;z =1 +y71sz +y71X71+72

Together, they determine the monodromy

2 2
Y Yy
2X’Yl+72 + (y)2

U=1— 2 (X, +X;,) + 07

()
= ¢(XW1)¢(X72)

(Xayy + Xony) + .-
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Second Example: SU(2) N = 2*

The graph has three edges p1, p2, p3;
each contributes one equation

/ —1
F,=UFU
with
F, = 14Xy +(y 4y )Xoy 4 +X.Yl+273+(y+y71)X,,1+~,22+273+X71+2~,2+273 +Xoy1 42954273
1 (1= Xy +29p42v3
Fo— 16X +(y 4y ™) Xag s H X 12 H (Y T )Xo 12 s H X 1231273 H Koy 12904273
PL (1=Xery 429542v3)
Fpys & Fp, , are obtained by cyclic shifts of y1, 72, 3.

The solution:
U= <Hn/(20 @ (X’Yl+"(’)1+’yz)))

_ _ -1
x® (X%) ¢ ((*}’)Xwﬁvz) ‘o ((*}’) 1X71+vz) ® (X271+272+73)

X (Hn\zo ¢(Xw+n('v1+'vz)))
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General graph structure

Spectral networks rules constrain the types of graphs that can occur.

Graphs can have two types of nodes: branch points or joints.
Combinatorics of 2d-4d soliton propagation depends on the node type.

NN
BN
AR
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Framing

Fp, F, can be determined from the graph by simple rules, based on
> the topology of a graph

» a framing: a cyclic ordering of edges at each node
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Framing

Fp, F, can be determined from the graph by simple rules, based on
> the topology of a graph

» a framing: a cyclic ordering of edges at each node

\ — \\\ ——
Graphs of A; theories have no \\‘/// S
joints, only branch points. | /
Topology and framing define a ;‘ \/

ribbon graph.

To each (Q-algebraic) Riemann surface C is associated a holomorphic map

B : C — P!, with ramification at 0,1, 00 [Belyi].

The preimage B'([0, 1]) is a ribbon graph on C, a dessin d’enfants [Grothendieck].
The ribbon graph is the union of critical leaves of a foliation on C by a Strebel
differential [Harer, Mumford, Penner, Thurston, Mulase-Penkava].
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Graph symmetries

Symmetries of a graph: automorphisms preserving both its topology and
framing, they are inherited by U.

These symmetries are often hidden by the Kontsevich-Soibelman factorization
U =[] ®(X). Instead they become manifest on the graph (Ex. Zs symmetry
in V' =2%).
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Graph symmetries

Symmetries of a graph: automorphisms preserving both its topology and
framing, they are inherited by U.

These symmetries are often hidden by the Kontsevich-Soibelman factorization
U =[] ®(X). Instead they become manifest on the graph (Ex. Zs symmetry
in V' =2%).

Graph symmetries show that U shares important properties of the
superconformal index.

» Punctures on C encode global symmetries of a Class S theory [Gaiotto,

Chacaltana-Distler-Tachikawa].

» The index is computed by correlators of a TQFT on C
[Gadde-Pomoni-Rastelli-Razamat], it is a symmetric function of the flavor fugacities.

» Symmetries of the graph permute punctures, implying that U is a
symmetric function of the corresponding flavor fugacities, like the index.
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Conclusion

1. To a class S theory associate a canonical “critical graph” on the UV curve,
emerging from a degenerate spectral network at B..

A new definition of the BPS monodromy, encoded by the topology and
framing of the graph.

3. Does not use BPS spectrum. Manifest invariance under wall-crossing. At
the critical locus B. the BPS spectrum is ill-defined.

4. Simpler than computing U by using BPS spectra. Symmetries of U are
manifest from the graph.
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Open questions

» Existence conditions for the critical locus B. where the critical graph
emerges

» Equivalence relations among graphs: different topology, same U on
different components of B.

» Constructive approach by gluing graphs [Gabella-PL in progress]

» Relation to BPS quivers [Gabella-PL-Park-Yamazaki in progress]
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Open questions

» Existence conditions for the critical locus B. where the critical graph
emerges

» Equivalence relations among graphs: different topology, same U on
different components of B.

» Constructive approach by gluing graphs [Gabella-PL in progress]

» Relation to BPS quivers [Gabella-PL-Park-Yamazaki in progress]

Thank You.
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