PHENIX overview

HESZ workshop 2017, Nagoya, Japan

September 28,

Ralf Seidl(RIKEN)

Outline

- Introduction to PHENIX
- Cold nuclear matter effects studied in PHENIX
- (Mostly)Forward spin physics:
 - Discovery of gluon spin contribution
 - Transverse single spin asymmetries
 - Single spin asymmetries in pA
- The Future of RHIC and eRHIC

Cold nuclear matter effects

• Main questions:

- Are there nonlinear effects at low x when gluon densities get too large?
- Is the saturation scale at x to be reached in p(d)-A collisions and e-A collisions large enough to be perturbative?
- What are actual smoking guns for such effects?

Dijet suppression in dAu vs pp collisions

 Suppression increasing with increasing N_{coll}

HESZ 9/28/2017

Phys.Rev.Lett. 107 (2011) 172301

Decreasing with increasing momentum (related to increasing x)

R.Seidl: PHENIX overview

RIKEL

Indications of CNM effects at low x

- Peripheral collisions: little to no di-jet suppression
- Central collisions: Strong suppression at lowest x visible

$$x_{Au}^{frag} = \left(\langle P_{T1} \rangle e^{-\langle \eta_1 \rangle} + \langle P_{T2} \rangle e^{-\langle \eta_2 \rangle} \right) / \sqrt{s_{NN}}$$

$$x_{Au}^{frag} < x_{Au}$$

2016 MPC-EX data analysis ongoing

• Successful dAu@200 GeV data taking in 2016 with MPC-EX for di-pion measurements with high statistics will access nuclear gluon PDF for $X_g < 10^{-2}$

CNM effects at moderately forward rapidities

- J/Psi and open heavy flavor production at rapidities 1.4<|η|<2.0 in dAu collisions extracted
- For lower-x_{Au} (dforward) suppression up to 50% seen in both particle types
- Higher xAu show pronounced enhancement in HF muons at lower pT but not for J/Psi

Phys.Rev.Lett. 112 (2014), 252301

R_{CP} in pA for charged hadrons

- Similar suppression seen for charged hadrons in pA collisions in p going direction
- Similar enhancement seen in A going direction
- Effects strongest for central collisons, much smaller for peripheral collisions
- pAl and pAu suppression consistent within uncertainties but enhancement different

UPC J/Psi production

- At impact parameter larger than nucleii sizes use virtual photon fields for DIS-like diffractive measurements
- Especially VMs have same Quantum numbers as photons and their mass can provide the scale
- Experimentally triggered by no activity in main collision triggers but various neutrons in ZDCs

Spin Physics

Gluon polarization

- Barely access via DIS data through DGLAP evolution (no large Q² lever arm)
- Some access in SIDIS through high Pt hadrons and charmed mesons
- Polarized pp collisions at LO in α_S sensitive to gluons
- \rightarrow long. double spin asymmetries A_{LL} access Δg

Reaction	Dom. partonic process	probes	LO Feynman diagram
$ec{p}ec{p} ightarrow \pi + X$	$ec{g}ec{g} o gg$	Δg	gg o o o o o o o
	$ec{q}ec{g} ightarrow qg$		3
$\vec{p}\vec{p} \to \text{jet(s)} + X$	$egin{array}{l} ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg \end{array}$	Δg	(as above)
$\vec{p}\vec{p} \to \gamma + X$ $\vec{p}\vec{p} \to \gamma + \text{jet} + X$	$ec{q}ec{g} ightarrow\gamma q \ ec{q}ec{g} ightarrow\gamma q$	$\Delta g \ \Delta g$	<u>></u> <
$\vec{p}\vec{p} \to \gamma\gamma + X$	$ar{q}ar{q} o \gamma \gamma$	$\Delta q, \Delta \bar{q}$	
$\vec{p}\vec{p} \to DX, BX$	$ec{g}ec{g} ightarrow car{c},bar{b}$	Δg	3000<

R.Seidl: PHENIX overview

First nonzero gluon spin indication

DSSV:Phys.Rev.Lett. 113 (2014) 012001

Also confirmed by NNPDFpol fit

Gluon spin: To higher energies

- Nonzero gluon
 polarization
 established with RHIC
 vs = 200 GeV data
- RHIC 510 GeV data
 (>2011) now confirms it
 in workhorse (jet,
 pion) measurements
- Extend access to lower x by higher energy (now~ 10⁻²)

PHENIX result:

RIKEN press release

BNL and DOE research highlights

DOE labs 2016 research highlights

report

...and lower x (i.e. forward)

Phys.Rev. D94 (2016)

 $J/\psi + X \rightarrow \mu^+\mu^- + X @ forward rapidity$

HESZ 9/28/2017

PHENIX forward J/ψ measurements reach close to x~10⁻³

Including feeddown almost entirely produced from gg

 Due lack of knowing production mechanism interpretation still difficult

Other forward π^0 measurements ongoing to get better precision down to $x\sim10^{-3}$

Eventually EIC to pin down integrals, strangeness and need for OAM

Inclusive single hadron left-right asymmetries in pp collisions

- Both initial state and final state effects contribute
 - Only one scale → need to be described by collinear higher twist functions
 - Initial state higher twist effect related to kt moment of Sivers TMD
 - Final state effect related to transversity and kt moments of Collins fragmentation function
 - Some indications for potentially other origins

- Explicit hadron-in-jet and DY asymmetries directly related to TMDs
- Also study A dependence in pA collisions

Phys.Rev. D90 (2014) 7, 072008 Phys.Rev. D90 (2014) 1, 012006

R.Seidl: PHENIX overview

Heavy flavor asymmetries

Heavy flavor
 asymmetries most

sensitive to Twist-3 process counterpart of Gluon Sivers and tri-gluon

correlator,

- no final state effects expected due to heavy quark mass
- Both contributions poorly known

Phys.Rev. D95 (2017) 112001

Model calculations from: Koike et.al. Phys.Rev. D84 (2011) 014026

J/Psi A_Ns

- Surprising nonzero J/Psi
 A_Ns seen in pAu collisions
 while pp Asymmetries are
 mostly consistent with
 zero
- Nonzero effect only visible at the lowest available Pt
- Diffractive effects as cause not very likely due to coincidence with hard collision trigger
- pAl data is being analyzed

A dependence of central π^0 A_N s

- Central rapidity A_Ns mostly sensitive to Gluon Sivers Twist-3 counterpart
- pp results consistent with zero at even higher precision
- No surprises in A dependence

A dependence of charged hadron A_Ns

- Clear nonzero charged pion, kaon and proton asymmetries seen by Brahms at x_f>0.1
- PHENIX can cover charged hadrons in the muon arms at overlapping x_f
- Hadron composition mostly understood
- Asymmetries from 2015 pp and pAu data expected soon

Forward neutron asymmetries

arXiv:1703.10941

- Unexpectedly large A dependence in neutron asymmetries
- Sign change seen
- Possibility of ultraperipheral collisions (UPC) effect, enhanced by Z² for nucleii
- (anti-)Correlations with main Collision detector system enhance/reduce UPC contribution

UPC explanation of neutron ANs

 From MAID simulations UPC cross section in ZDCs is indeed substantial in pAu collisions

Mitsuka: Eur.Phys.J. C75 (2015) 614

Mitsuka: Phys.Rev. C95 (2017) 044908

 More details to follow with explicit Pt dependent Asymmetry analysis (ongoing)

Di-hadron and h-y correlations

- Look at angular correlation between nearly back-to-back particles
- Widths of Gaussian components seem to be decreasing with trigger particle momentum while increase is expected
- Pythia qualitatively describes this effect

RHIC future (for spin and CNM physics)

- Currently 510 GeV run ongoing in STAR for Sivers function mesurements in Ws, Z and DY
- sPHENIX detector (-1.1<η<1.1):
 - 1.4T Babar magnet
 - Central TPC + MAPS vertex tracker
 - EM+HCAL
 - CDo in Fall 2016
- For spin and CNM interest in Forward rapidites:
 - origin of large asymmetries,
 - high/low x reach
- fsPHENIX (2<η<4):
 - Reused PHENIX EMCal
 - New HCAL (joint development for STAR/fsPHENIX/EIC led by UCLA)
 - Tracking (GEMs or sTGCs)

- Most detectors directly useable for eRHIC
- Main Goals:
 - jet transverse asymmetries (flavor enhanced or Collins),
 - DY/photons in pA for nuclear /gluon PDFs
 - Hadronization in medium

eRHIC

- 2015 NSAC long range plan highest priority new facility: electron Ion Collider (EIC)
- Currently National Academy of Science review ongoing
- DOE CD process starting soon
- 2 potential realizations:
 - JLAB (CEBAF+new pol. ion accelerator – concentration on first high intensity, lower CMS energy)

- eRHIC (RHIC + new pol electron beam – concentration on first high CMS energy, initially lower intensity)
- ePHENIX (fsPHENIX + electron side+PID)

Summary

- Indication of CNM effects seen in PHENIX, more to come soon
- Gluon spin contribution confirmed at higher collision energies, started accessing lower x
- New information towards understanding transverse asymmetries in hadron collisions, but also new puzzles (such as A dependence)

- More to come in the future:
 - RHIC (<u>CNM 2017-23</u> <u>plan</u>)
- EIC

Other 200 GeV results not

yet used in global fit

Phys.Rev. D91 (2015) 3, 032001

- Charged pions as potential direct indicator for sign of Δg via pion A_{LL} ordering
- 500 GeV analysis ongoing
- Reduced statistics compared to π^0 due to triggering
- Also central η

Phys.Rev. D87 (2013) 012011

- Single electrons at central rapidity from heavy flavor production directly sensitive to gluon helicity
- Large scale given by the HF quark masses

Real W production as access to (anti)quark helicities

- Maximally parity violating V-A interaction selects only lefthanded quarks and righthanded antiquarks:
- → Having different helicities for the incoming proton then selects spin parallel or antiparallel of the quarks
- → Difference of the cross sections gives quark helicities $\Delta q(x)$
- No Fragmentation function required
- Very high scale defined by W mass
 Bourrely , Soffer

Proton helicity ="+" $\overline{d(x_2)}$ $\overline{d(x_2)}$

Nucl.Phys. B423 (1994) 329-348

Sea quark polarization via W production

- Single spin asymmetry proportional to quark polarizations
- Large asymmetries
- Forward/backward separation smeared by W decay kinematics

$$A_{L}^{W^{+}} \approx \frac{-\Delta u(x_{1})\overline{d}(x_{2})(1-\cos\theta)^{2} + \Delta\overline{d}(x_{1})u(x_{2})(1+\cos\theta)^{2}}{u(x_{1})\overline{d}(x_{2})(1-\cos\theta)^{2} + \overline{d}(x_{1})u(x_{2})(1+\cos\theta)^{2}}$$

$$A_{L}^{W^{-}} \approx \frac{-\Delta d(x_{1})\overline{u}(x_{2})(1+\cos\theta)^{2} + \Delta\overline{u}(x_{1})d(x_{2})(1-\cos\theta)^{2}}{d(x_{1})\overline{u}(x_{2})(1+\cos\theta)^{2} + \overline{u}(x_{1})d(x_{2})(1-\cos\theta)^{2}}$$

Central W+Z e asymmetries
STAR: Phys.Rev.Lett. 113 (2014) 072301

PHENIX: Phys.Rev. D93 (2016), 051103

- Leptonic W decays very clearly visible via Jacobián peák
- Large asymmetries found, consistent between experiments
- e⁻ significantly above latest global fit

R.Seidl: PHENIX overview

Forward W+Z > µ asymmetries

- At forward rapidities no Gaussian peak to identify W decay muons
- Lower P_T hadrons as fake high P_T "muons"
- Successfully performed unbinned max likelihood analysis to identify signal

- Asymmetries as expected
- Still working on improving the uncertainties

R.Seidl: PHENIX overview

Forward W+Z → µ asymmetries

- At forward rapidities no Gaussian peak to identify W decay muons
- Lower P_T hadrons as fake high P_T "muons"
- Successfully performed unbinned max likelihood analysis to identify signal

- Asymmetries as expected
- Still working on improving the uncertainties

Sea quark helicites

NNPDFpol1.1:

arXiv:1406.7122

- STAR 2012 data at boundary of DSSV uncertainty bands
- Reweighted NNPDFpol_{1.1} shows substantial polarized light sea asymmetry
- opposite sign to most cloud models
- All central PHENIX data published,
- 2013 STAR data and forward PHENIX data pending

Sivers Function

We will be a second of the sec

- Proton-spin quark orbit (k_T) correlation
- Suggested in '93 dead due to time reversal
- Brodsky-Hwang-Schmid '02 model example of Sivers function using gauge links
- Belitsky-Yuan 'o2 → gauge links generally needed
- Collins → function can exist, but modified universality (the SIGN change)

Collins Function (x Transversity)

- Quark spin hadron transverse momentum correlation (in fragmentation)
- Analyzer for quark transversity
 → access to tensor charge
 (Lattice, BSM?)
- A polarized (ie signed) fragmentation function
- Transverse momentum conservation requires some compensation (Terayev-Schaefer)

