Spin physics in RHICf

Junsang Park(Seoul National University/RIKEN) for RHICf Collaboration
HESZ2017@Ngoya University
September 28th, 2017

Outline

1. Brief Introduction for RHICf experiment
2. Spin Physics in RHICf

- Forward neutron An
- Forward $\pi 0$ An

3. Operation

- RHICf detector
- DAQ system
- DATA taking
- RHIC \& Radial Polarized beam
- Run

4. Comparison with proposal
5. Status of Analysis

RHICf experiment

- Targets in detection: Very forward neutral particles(photons, $\pi 0$, and neutrons)
- Detectors: STAR ZDC, TPC, Roman pot and VPD + RHICf
- Physics motivations:
- Cross sections of forward $\pi 0$ and neutrons
- An of forward $\pi 0$ and neutrons
- Advantage:
- Usage of radial polarized beam and various detector position
\rightarrow Measurement of neutral particles over wider $p T$ range with higher position resolution

Spin Physics in RHICf

- Definition of AN:

$$
A_{N}=\frac{\sigma_{L}^{\uparrow}-\sigma_{L}^{\downarrow}}{\sigma_{L}^{\uparrow}+\sigma_{L}^{\downarrow}}=\frac{\sigma_{R}^{\downarrow}-\sigma_{R}^{\uparrow}}{\sigma_{R}^{\downarrow}+\sigma_{R}^{\uparrow}}=\frac{\sigma_{L}^{\uparrow}-\sigma_{R}^{\uparrow}}{\sigma_{L}^{\uparrow}+\sigma_{R}^{\uparrow}}=\frac{\sqrt{\sigma_{L}^{\uparrow} \sigma_{R}^{\downarrow}}-\sqrt{\sigma_{L}^{\downarrow} \sigma_{R}^{\uparrow}}}{\sqrt{\sigma_{L}^{\uparrow} \sigma_{R}^{\downarrow}}+\sqrt{\sigma_{L}^{\downarrow} \sigma_{R}^{\uparrow}}}
$$

- $\sigma_{L}^{\uparrow}, \sigma_{L}^{\downarrow}$: cross section for particles produced on left side when spin of incident particle is up(down)
- Also called Left-Right asymmetry

Spin Physics in RHICf

- Measurement of $\mathrm{A}_{N}(1)$: raw asymmetry $\epsilon_{N}(\phi)=\frac{\sqrt{N_{\phi}^{\dagger} N_{\phi+\pi}^{\downarrow}}-\sqrt{N_{\phi+\pi}^{\dagger} N_{\phi}^{\downarrow}}}{\sqrt{N_{\phi}^{\dagger} N_{\phi+\pi}^{\downarrow}}+\sqrt{N_{\phi+\pi}^{\dagger} N_{\phi}^{\downarrow}}}$
- $N_{\phi}^{\downarrow}, N_{\phi}^{\dagger}$: Number of particles going through specific area when spin of incident particle is down(up)

Spin Physics in RHICf

- Measurement of $\operatorname{AN}($ Modular measurement not applicable): Relative luminosity \rightarrow Point: Present AN with measurable quantities

$$
A_{N}=\frac{\sigma_{L}^{\uparrow}-\sigma_{L}^{\downarrow}}{\sigma_{L}^{\uparrow}+\sigma_{L}^{\downarrow}}=\frac{N_{L}^{\uparrow}-R N_{L}^{\downarrow}}{P\left(N_{L}^{\uparrow}+R N_{L}^{\downarrow}\right)}
$$

- Relative luminosity :

$$
R=\frac{L^{\uparrow}}{L^{\downarrow}}=\frac{N^{\uparrow}}{N^{\downarrow}}
$$

- Measurement of R : STAR ZDC, BBC and VPD(vertex position detector)

An for forward neutron

- Previous result: 2002:RHIC IP12 experiment 2006: PHEINX
- Origin of AN for forward neutrons?
\rightarrow Some of interaction models explain it
- $\pi-a 1$ reggeon interference model:

Kopeliovich, Potashnikova, Schmidt, Soffer PRD84, 114012 (2011)

- One-Pion exchange model
\rightarrow Cross section is okay, But can't explain large AN

An for $\pi \pm$ and $\pi 0$

D. L. Adams et al. (FNAL-E581 and E704 Collabora- tions), Phys. Lett. B 261, 201 (1991).
D.L. Adams et al. (E704 Collaboration), Phys. Lett. B264, 462 (1991)

- Previous result:

1991: 704 collaboration reported unexpected large An (~30\%) in
$p+p \rightarrow X+\pi \pm, 0$ over large $X F$ at $\sqrt{ } s=19.4 \mathrm{GeV}$
2006 : PHENIX confirmed small AN(~3\%) of $\pi 0$ over mid pseudorepidity $(3.1<\eta<3.7)$ at $\sqrt{ } \mathrm{s}=62.4 \mathrm{GeV}$

- Higher Twist contribution explain these data
- When it comes to AN within range covered but SMD, AN is 0 (Due to systematic error ΔX of $S M D \sim 1 \mathrm{~cm}$)

Operation

- Measurement Location: 18m away from STAR IP
- 3 different detection position
- Common data taking with STAR(ZDC, Romanpot, BBC and TPC)
- Radial Polarizated beam with $\sqrt{ } \mathrm{s}=510 \mathrm{GeV}$ and $\beta^{*}=8 \mathrm{~m}$

Detector

- ZDC\&SMD : Hadron calorimeter with 5.1 Iı \& 153 Xo (3 modules)
- Energy resolution : $\sigma E / E \sim 20 \%$ at 100 GeV incident neutron
- Position resolution : $\sim 1 \mathrm{~cm}$
- RHICf : EM calorimeter with $1.7 \mathrm{\lambda}$ \& 44 Xo
- Energy resolution : ($\left.\sigma_{E} / E\right)_{p} \sim 5 \%$ and ($\left.\sigma_{E} / E\right)_{n} \sim 40 \%$
- Position resolution : ~ 1mm

Data taking

- RHICf send all final trigger signals to STAR DAQ including pedestal triggers.
- STAR issues a Event-ID: Token (12 bits) for each L1 triggers
- RHICf records the Token+DAQ commands (20 bits in total) and send data with the Token via network.
- STAR makes event-build and records into a disk.

Hardware setup

- FPGA boards managed both sending trigger and recording Token.
- A level converter converts the signal level PECL <-> LvTTL.

RHIC(Relativistic Heavy Ion Collider)

- World 1st high energy polarized beam collider

Radial Polarized beam

Run 18177011 ZDC Asymmetry (Blue)

Radial Polarized beam

Comparison with proposal

- Estimates for An measurement in proposal

detector is at the position-1. Number of neutrons observed in the $3 \mathrm{~mm}<\mathrm{r}<8 \mathrm{~mm}$ ring region in the small calorimeter during 4 hours operation at the position- 1 is 1.1×10^{6}. In this case $\delta \mathrm{A}=0.0019$ is expected.
- Quick result value for number of neutron : ~7×10^5

Status of Analysis

- Current parameters of analysis tool are optimized for LHCf experiment.
- Studying MC simulation for optimization of RHICf
- Making full simulation for RHICf

Summary

- AN is useful observable as tool in studying intrinsic nucleon structure
- In RHICf experiment, An over wider $p T$ range with higher $p T$ resolution can be measured. This will be used in figuring out interaction model in soft QCD range
- neutron : $p T<0.3 \& p T>0.6$ at $\sqrt{ } \mathrm{s}=510 \mathrm{GeV}$
- pion : measurement in $3.1<n<3.7 \rightarrow$ measurement in $6<n$
- Common operation with STAR(ZDC, TPC, VPD and Romanpot)
- Comparing with experiment proposal, RHICf experiment is completed successfully.
- MC studies for optimization in analysis are under going

Backup

An for forward $\pi \pm$ and $\pi 0$

Fig. 3. The asymmetries A_{N} in the reactions $\overline{\mathrm{p}} \dagger+\mathrm{p} \rightarrow \pi^{0}+\mathrm{X}$ (closed circles) and $p t+p \rightarrow \pi^{0}+X$ (open squares, see ref. [1]) at 200 GeV in different regions of x_{F}, integrated over p_{f} from 0.5 to 2 GeV / c. The quantity $\sigma / / \sigma 1$ is the ratio of the π° production cross sections for opposite beam spins.

Fig. 4, A_{N} versus x_{F} for π^{+}, π^{-}and π^{0} data.

Figure 1.3: A_{N} vs. p_{T} for inclusive π^{0} productions from polarized $p p$ scattering in $\sqrt{s}=19.4 \mathrm{GeV}$. The data is shown for $0.5<x_{F}<0.8$. [26]

Quick result(reconstructed $\pi 0$ mass)

Quick result(Hits map for beam center)

Quick result

Quick result(Recorded event\#)

Quick result(Statistics in various trigger)

Quick result(Event\# of RHICf vs of STAR)

Correlation between collision IDs

