Spin physics in RHICf

Junsang Park(Seoul National University/RIKEN) for RHICf Collaboration HESZ2017@Ngoya University September 28th, 2017

Outline

- 1. Brief Introduction for RHICf experiment
- 2. Spin Physics in RHICf
 - Forward neutron AN
 - Forward π0 An
- 3. Operation
 - RHICf detector
 - DAQ system
 - DATA taking
 - RHIC & Radial Polarized beam
 - Run
- 4. Comparison with proposal
- 5. Status of Analysis

RHICf experiment

- Targets in detection: Very forward neutral particles(photons, π0, and neutrons)
- Detectors: STAR ZDC, TPC, Roman pot and VPD + RHICf
- Physics motivations:
 - Cross sections of forward $\pi 0$ and neutrons
 - An of forward π0 and neutrons
- Advantage:
 - Usage of radial polarized beam and various detector position
 - → Measurement of neutral particles over wider *pT* range with higher position resolution

Spin Physics in RHICf

Definition of An:

$$A_{N} = \frac{\sigma_{L}^{\uparrow} - \sigma_{L}^{\downarrow}}{\sigma_{L}^{\uparrow} + \sigma_{L}^{\downarrow}} = \frac{\sigma_{R}^{\downarrow} - \sigma_{R}^{\uparrow}}{\sigma_{R}^{\downarrow} + \sigma_{R}^{\uparrow}} = \frac{\sigma_{L}^{\uparrow} - \sigma_{R}^{\uparrow}}{\sigma_{L}^{\uparrow} + \sigma_{R}^{\uparrow}} = \frac{\sqrt{\sigma_{L}^{\uparrow} \sigma_{R}^{\downarrow} - \sqrt{\sigma_{L}^{\downarrow} \sigma_{R}^{\uparrow}}}}{\sqrt{\sigma_{L}^{\uparrow} \sigma_{R}^{\downarrow} + \sqrt{\sigma_{L}^{\downarrow} \sigma_{R}^{\uparrow}}}}$$

• σ_L^{\uparrow} , σ_L^{\downarrow} : cross section for particles produced on left side when spin

of incident particle is up(down)

Also called Left-Right asymmetry

Spin Physics in RHICf

- Measurement of An (1): raw asymmetry $\epsilon_N(\phi) = \frac{\sqrt{N_\phi^{\uparrow} N_{\phi+\pi}^{\downarrow}} \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}}{\sqrt{N_\phi^{\uparrow} N_{\phi+\pi}^{\downarrow}} + \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}}$
- N_{ϕ}^{\uparrow} , N_{ϕ}^{\uparrow} : Number of particles going through specific area when spin of incident particle is down(up)

Spin Physics in RHICf

- Measurement of An(Modular measurement not applicable): Relative luminosity
 - → Point: Present AN with measurable quantities

$$A_N = \frac{\sigma_L^{\uparrow} - \sigma_L^{\downarrow}}{\sigma_L^{\uparrow} + \sigma_L^{\downarrow}} = \frac{N_L^{\uparrow} - RN_L^{\downarrow}}{P(N_L^{\uparrow} + RN_L^{\downarrow})}$$

• Relative luminosity : $R=rac{L^{\uparrow}}{L^{\downarrow}}=rac{N^{\uparrow}}{N^{\downarrow}}$

• Measurement of R: STAR ZDC, BBC and VPD(vertex position detector)

An for forward neutron

• Previous result:

2002:RHIC IP12 experiment

2006: PHEINX

- Origin of AN for forward neutrons?
 - → Some of interaction models explain it
- π-a1 reggeon interference model:

- One-Pion exchange model
 - → Cross section is okay, But can't explain large AN

An for $\pi \pm$ and $\pi 0$

D. L. Adams et al. (FNAL-E581 and E704 Collabora- tions), Phys. Lett. B 261, 201 (1991).

Previous result: D.L. Adams et al. (E704 Collaboration), Phys. Lett. B264, 462 (1991)

1991: 704 collaboration reported unexpected large An (~30%) in

 $p + p \rightarrow X + \pi \pm 0$ over large XF at $\sqrt{s}=19.4$ GeV

2006: PHENIX confirmed small An(~3%) of π0 over mid pseudo-

repidity(3.1 $<\eta<$ 3.7) at $\sqrt{s}=$ 62.4GeV

Higher Twist contribution explain these data

 When it comes to AN within range covered but SMD, AN is 0 (Due to systematic error ΔX of SMD ~1cm)

Operation

- Measurement Location: 18m away from STAR IP
- 3 different detection position
- Common data taking with STAR(ZDC, Romanpot, BBC and TPC)
- Radial Polarizated beam with √s=510GeV and β*=8m

Detector

- ZDC&SMD: Hadron calorimeter with 5.1 λι & 153 Xo (3 modules)
 - Energy resolution : σE/E ~ 20% at 100GeV incident neutron
 - Position resolution : ~ 1cm
- RHICf: EM calorimeter with 1.7 λι & 44 Χο
 - Energy resolution : (σ_E/E)_γ ~ 5% and (σ_E/E)_n ~40%
 - Position resolution : ~ 1mm

Data taking

- RHICf send all final trigger signals to STAR DAQ including pedestal triggers.
- STAR issues a Event-ID: Token (12 bits) for each L1 triggers
- RHICf records the Token+DAQ commands (20 bits in total) and send data with the Token via network.
- STAR makes event-build and records into a disk.

Hardware setup

- FPGA boards managed both sending trigger and recording Token.
- A level converter converts the signal level PECL <-> LvTTL.

RHIC(Relativistic Heavy Ion Collider)

World 1st high energy polarized beam collider

Radial Polarized beam

Radial Polarized beam

Comparison with proposal

Estimates for An measurement in proposal

detector is at the position-1. Number of neutrons observed in the $3\,\text{mm}<\text{r}<8\,\text{mm}$ ring region in the small calorimeter during 4 hours operation at the position-1 is 1.1×10^6 . In this case δA =0.0019 is expected.

Quick result value for number of neutron: ~7×10^5

Status of Analysis

- Current parameters of analysis tool are optimized for LHCf experiment.
- Studying MC simulation for optimization of RHICf
- Making full simulation for RHICf

Summary

- An is useful observable as tool in studying intrinsic nucleon structure
- In RHICf experiment, An over wider pT range with higher pT resolution can be measured. This will be used in figuring out interaction model in soft QCD range
 - neutron : pT < 0.3 & pT > 0.6 at \sqrt{s} =510GeV
 - pion : measurement in $3.1 < \eta < 3.7 \rightarrow$ measurement in $6 < \eta$
- Common operation with STAR(ZDC, TPC, VPD and Romanpot)
- Comparing with experiment proposal, RHICf experiment is completed successfully.
- MC studies for optimization in analysis are under going

Backup

An for forward π ± and π 0

Fig. 3. The asymmetries A_N in the reactions $\bar{p}\uparrow + p \rightarrow \pi^0 + X$ (closed circles) and $p\uparrow + p \rightarrow \pi^0 + X$ (open squares, see ref. [1]) at 200 GeV in different regions of x_F , integrated over p_t from 0.5 to 2 GeV/c. The quantity $\sigma\uparrow/\sigma\downarrow$ is the ratio of the π^0 production cross sections for opposite beam spins.

Fig. 4. A_N versus x_F for π^+ , π^- and π^0 data.

Figure 1.3: A_N vs. p_T for inclusive π^0 productions from polarized pp scattering in \sqrt{s} =19.4 GeV. The data is shown for 0.5< x_F <0.8. [26]

Quick result(reconstructed π0 mass)

Quick result(Hits map for beam center)

Quick result

Quick result(Recorded event#)

Quick result(Statistics in various trigger)

Quick result(Event# of RHICf vs of STAR)

