

ATLAS Forward Proton: Measurements and Prospects for Exclusive Diffraction, BSM Physics and Pomeron Structure

Carla Sbarra On behalf of the ATLAS Collaboration HESZ 2017 Nagoya, 26-29 September 2017

Outline

- Diffraction in pp collisions at LHC
- LHC Running Parameters and Strategies
- ATLAS up to 2015: $\sigma_{\rm EL}$ & $\sigma_{\rm TOT}$, Diffraction Studies with Rapidity Gaps in Central Detector
- Increasing ATLAS Physics Reach: the AFP Project
 - 2016: AFP Single Arm Configuration
 - proton tag validation
 - 2017: AFP Double Arm Configuration
 - Current Status
 - Expected Physics Reach
- The (foreseeable) Future

Diffraction in pp collisions at LHC

 $\sigma_{\text{tot}} = \sigma_{\text{inel}} (\approx 75\%) + \sigma_{\text{EL}} (\approx 25\%) \qquad \text{Total Cross Section} \approx 100 \text{ mb} \dots$ $\sigma_{\text{inel}} = \sigma_{\text{ND}} + \sigma_{\text{SD}} + \sigma_{\text{DD}} + \sigma_{\text{CD}} \quad \text{(diffractive part 25-30\% of inelastic)}$

Diffractive events characterized by exchange of colorless objects: photons (QED) or pomerons (QCD). Pomeron constituents resolved in hard diffraction. Experimental Signatures: rapidity gaps and very forward protons

... only few fb for rarest processes

Soft Diffraciton

SD, DD, CD described by models

Hard Diffraction: SD, DPE with pomeron remnants; DPDF description; gap survival probability S²; CEP; two-photon interactions

LHC Running Parameters and Strategies

Main Machine Settings:

- Filling Scheme: from few to ~ 2800 bunches, isolated/ trains, beam intensity
- E_{CM}
- Beam Optics: standard ($\beta^* < 1 \text{ m}$), and special with $\beta^* = 90 \text{ m}$, 1 km, 2.5 Km, ...

Running Strategies:

- Rare processes: Maximize Luminosity → many bunches, high intensity, low β*, large μ = pile-up of inelastic interactions
- Elastic scattering, B, $\rho \rightarrow$ Large β^* and low μ
- Pile-up modeling, Underlying Event, Diffraction without proton tags /ToF \rightarrow Special low- μ at nominal β^*
- σ_{tot} , ρ evolution \rightarrow Special E_{CM} (900 GeV)

ATLAS up to 2015

- Central Detector |η|<4.9
- LUCID at 17 m from IP (luminosity monitor)
- ZDC at 140 m from IP, to detect neutrons/photons in HI collision
- ALFA: scintillating-fiber tracking detectors in vertical Roman Pots at 237-245 m from IP, optimized for elastic scattering: proton fractional momentum loss ξ ≈ 0 and small p_T

pp Diffraction with ALFA

Proton $\xi = 1 - E_p / E_{beam}$ acceptance strongly dependent on beam optics:

- Standard optics (β*<1m) with limited acceptance for diffracion, and not useful for studying Elastic Scattering
- Detectors moved close to beam (<10 σ_{beam}) in large β^* , dedicated runs only
- Studies on Diffraction with large β^* runs also possible

pp Elastic Scattering with ALFA

- Parallel-to-point-focusing in vertical plane
- Precise knowledge of LHC magnetic lattice and detector position needed to count events as a function of t
- Goals: σ_{TOT}, ρ, B and Absolute Luminosity via elastic pp scattering in Coulomb-Nuclear Interference region (very small t)

σ_{EL} and σ_{TOT}

- σ_{TOT} from σ_{EL} + optical theorem in $\beta^* = 90$ m runs at 8 (and 7) TeV
- Fit range: 0.014 Gev² < -t < 0.1 GeV²
- Extrapolation to $t \rightarrow 0$
- Luminosity from other detectors (main syst. for σ_{TOT})
- B-slope fit (main syst. from beam momentum)

Analysis of runs taken with $\beta^{*}=1$ Km (8 TeV) and $\beta^{*}=2.5$ Km (13 TeV) coming soon (smaller $t \rightarrow \rho$ measurement)

LHC at E_{CM} = 900 GeV with β^* =100 m probably before winter TS

Phys. Lett. B 761 (2016) 158 Nucl. Phys. B 889 (2014) 486

Hard Diffraction with Central Detector: Dijet + rapidity gap @ 7 TeV

Phys. Lett. B 754(2016) 214

energy deposited in Central Detector (ξ)

Lol (phase I upgrade) in 2011: *CERN-LHCC-2011-012* Approved in 2014, TDR in 2015: *ATL-TDR-024-2015*

The AFP Project

AFP Proton Acceptance versus Beam Optics

Best acceptance in fractional momentum loss for standard, low β^* optics independently of crossing angle

Complementary to ALFA

Tracking Detector Requirements

- $\xi = 1 E_p / E_{beam}$ acceptance dependent on *x*-distance from beam \rightarrow minimum dead area, as close to beam as possible
- Radiation hard (expect from 5x10¹² to 3x10¹⁵ neq for 10 fb⁻¹)
- 2-3% resolution on centrally produced mass $\rightarrow \sigma_x = 10 \ \mu m$, $\sigma_y = 30 \ \mu m$

Mass of centrally Produced system X: $M_x^2 = \xi_1 \xi_2 s$

mass of two-photons [GeV]

for distance \approx 15 σ_{beam} (2 mm) 0.02 < ξ < 0.1 Upper limit set by position of LHC collimator

Selected Tracker

- Slim edge 3D pixel sensors (as in ATLAS-IBL + dead area cut to 150 μm)
- validated for non-uniform irradiation up to 5x10¹⁵ neq/cm²
- FEI4 readout chip (4 bits for ToT)
- 4 layers of 336 x 80 pixels of size $50 \times 250 \,\mu\text{m}^2$
- 14° tilt in x (2 pixels/cluster) $\sigma_x \approx 6 \mu m/plane$

10V, 2ke, 10@20ke, DUT plane 2

• Staggered along y

Bump

p' sub.

p* Si

p-stop

col.

passivation

n° poly-Si

p-stop

n^{*} col.

metal

p" poly-Si

Timing Detector Requirements

- Identify primary vertex in high pile-up events (up to $\mu \approx 55$) $\rightarrow \sigma_t \approx 10$ ps, or $\sigma_z \approx 2$ mm
- E > 90% (trigger)
- Granularity to reject pile-up protons in AFP itself (SD + ND, DD events with protons from hadronization + beam halo, beamgas...)

$$z_{vtx} = \frac{1}{2}c(t_L - t_R)$$

Essential to exploit high pile-up data!!! *

C. Sbarra - HESZ 2017

Selected ToF

- 4 trains of 4 Quartz Lbars at Cherenkov angle with respect to impinging protons
- light readout by MCP-PMTs
- Electronics includes CFD for triggering, HPTDC for Time of Flight
- Approaching goal resolution with 4 uncorrelated measurements (beam test for R&D still on-going)

AFP 0+2 (2016): First Data

- 3(4) planes of SiT in near (far) station (side C)
- No ToF
- DAQ ready by March, insertions during LHC intensity rump-up, beam-based alignment
 - good plane alignment, signals as expected
 - Trigger (plane-majority logic) timed in

Data from 300-bunch run, $\mu \leq 26$, $\beta^*=0.4$ m

Distance from sensor edge, x [mm]

Events with tagged protons and jets

2016 summary

- First arm of AFP installed (2015 End of Year Technical Stop) with Si trackers in two stations and fully commissioned with 2016 beam
- AFP inserted up to 20 σ_{beam} (~3 mm) $\rightarrow \xi_{\text{min}} \approx 3.5\%$
- Various insertions in fills at high pile-up (alignment, study of beam bkg, radiation)
- hit-probability in AFP per minimum bias event: 1.5% (near station) 2.0 %(far station) → estimate of pile-up in high-µ double tagged events for 2017
- AFP validated as proton tag to select SD events
- Two low pile-up runs (μ <0.3, $\mathcal{L} \approx 0.5 \text{ pb}^{-1}$) to be analyzed for Physics

AFP 2+2 (2017): Second Arm

- Successful installation and calibration of second arm (side A)
- All detectors in: ToF in far station behind SiT on both sides
- Qualified for full insertion 12σ+0.3 mm (1.5-2.7 mm)
- Full integration in ATLAS DAQ
- Correlation between ToF and SiT signals observed
- Trigger signals to ATLAS timed in correct BCID (both SiT and ToF)
- ToF resolution under study with both data and beam test (understand cross-talk, efficiency, resolution, showers,bkg...)

A HUGE amount of work!

AFP now taking data all the time at high pile-up

few operational issues...

- Jitter in reference clock (one side) solved at beginning of September (no z-vertex reconstruction before) → focus on getting z-vertex distributions since then
- HV/LV cables integrity (SiT plane inefficiencies)
- Radiation effects (SiT currents, auto-recovery from SEU in electronics) are maneageble
- Ageing of DAQ fibers (monitored/under control)
 - ... and no show stoppers

Physics with AFP 0+2 ($\mu \le 1$)

 $\label{eq:lasses} \begin{array}{l} \pounds \approx 0.5 \ pb^{\text{-1}} \\ \mbox{In 2016 at } \mu \mbox{<} 0.3 \end{array}$

Improve and extend ATLAS SD studies based on rapidity gaps

Analysis	Motivation	$\int Ldt \ [pb^{-1}]$	Optimal µ
Soft Single Diffraction with AFP0+2			
$d\sigma/dt$, $d\sigma/d\xi$, t-Slope vs. ξ ,	Saturation, MC tuning, Cos-	1	$\mu \sim 0.01$
dN^{\pm}/dp_T vs. t and ξ	mic Ray physics		
Single Diffractive jet Production [21]			
σ , rapidity gap, Jet structure and	gap survival probability,	10 - 100	$\mu \sim 1$
p_T , event shape (MPI [21]); vs. t ,	Pomeron structure		
ξ , and β	Pomeron flux, M	C tuning	
Single Diffractive jet-gap-jet Production [22, 23, 24]			
σ , central gap distribution, Jet	observation of a new process,	1 – 100	$\mu \sim 1$
p_T ; vs. t , ξ , and β	test of BFKL dynamics		
Single Diffractive Production of γ + jet [25]			
σ , rapidity gap, Jet structure	observation of a new process,	10 - 100	$\mu \sim 1$
and p_T , Photon p_T , event shape	mechanism of hard diffrac-		
(MPI); vs. t , ξ , and β	tion, gap survival probability,		
	Pomeron structure		
Single Diffractive Z Production			
σ , rapidity gap, charge-	gap survival probability,	10 - 100	$\mu \sim 1$
asymmetry; vs. t , ξ , and	Pomeron structure		
β		entent	
Single Diffractive W Production	a quark con		
σ , rapidity gap; vs. t , ξ , and β	gap survival probability,	10 - 100	$\mu \sim 1$
	Pomeron structure and flavor		
	composition		

Physics with AFP 2+2 (low μ)

- Soft diffraction: separation between SD/DD components, high purity samples for quantitative model testing
- All SD channels mentioned before
- DPE jet and γ+jet production (DPDF, gluon/quark content of Pomeron in clean samples)

Up to 10 pb⁻¹ expected in 2017-2018 runs

Physics with AFP 2+2 (high μ)

Central Exclusive Jet

Production

First observed by CFD@Tevatron Low $\sigma \rightarrow$ high pile-up run \rightarrow double tag

 \rightarrow ToF to control bkg

Photon-induced WW/ZZ/γγ Production

Best sensitivity to aQGC (few % missing mass resolution): factor 100 better than "standard" LHC analyses (sensitivity to higgless models, extra dimensions)

New Particles?

Compare mass and rapidity of central and pp systems

Dileptons good for calibration

The (foreseeable) future

• Run III (2020-2022)

Run with possibly improved detector (luminosity in standard runs increased mostly by leveling)

• HL-LHC (2025 and beyond)

- Available space/optics?
- Detector at 420 m for exclusive Higgs (defined spin-parity state) and H→bb (couplings)?
- $\gamma\gamma \rightarrow WW/ZZ/\gamma\gamma$ and new high-mass resonances

Research Program will depend on LHC strategy and Previous Results

Conclusions

- ATLAS has been complemented with a new system to tag Forward Protons, complementary to ALFA (the former for standard β^* runs, the latter for large β^* ones)
- AFP is now taking data with ATLAS and is qualified for full insertion at $12\sigma + 0.3 \text{ mm} (1.5-2.7 \text{ mm})$
- Work still ongoing to get z-vertex resolution
- A rich physics program including studies of pomeron structure and searches for BSM Physics is opening in RUN II
- Perspectives for RUN III and beyond under investigation