


Drell-Yan process and kinematics
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Partonic diagrams of Drell-Yan
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Forward Drell-Yan scattering

® Asymmetric kinematics
— large x, >> x, -

® Dominance of gluons at
small x, and valence

quarks atx, ~1=>

dominance of valence
quark — gluon fusion channel

® |nteresting to measure — probe of gluon distribution at
very small x



Forward Drell-Yan at LHC: kinematical reach

® At LHC forward Drell-Yan
may be used to measure

parton densties down to
X ~10%at M?> ~ 10 GeV?

® Unique opportunity to explore
this kinematic region and
extend measurements of
parton density functions
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Theoretical interest in the forward Drell-Yan at LHC

® Kinematical range: @ " [[LHcb]19<y<49
x <10°%at M? ~ 10 GeV? 10°F Gppe

F GPDs | |y <25

| My =
91GeV/c?
® Expected strong effects of small x

resummation

Q2 (GeV?)

® If the mass is sufficiently small, v
multiple scattering and higher twists
effects are expected to turn on:

Fixed target
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higher twist are suppressed by 1/M? g

107 10° 10° 10* 10° 102 10" 10°

but enhanced by X x

® Higher twist effects should be determined to avoid systematic errors of pdf
determination, they are also interesting for deeper understanding of proton
structure and dynamics of strong interactions



Plan: to make full use of forward Drell-Yan process at the
LHC as a probe of high energy scattering in QCD
I S

Introduce Drell-Yan structure functions
Lam-Tung relation in QCD
Dipole picture of forward Drell-Yan scattering

Small x resummation and twist decomposition in forward
DY scattering (technical)

® Results

Conclusions

Work done with

Dawid Brzeminski, Mariusz Sadzikowski and Tomasz Stebel,
JHEP 2015, 2017



Drell-Yan structure functions:

B
® | epton angular distributions: 4 Drell-Yan structure

functions (W_— frame dependent)
2

do a {
= 1 1 — cos? )W + (1 + cos®0) V-
doepdM2dQd?2qr  2(27)4 M4 ( cos” 0)Wp + (1 + cos™0)Wr

— (:31112 0 cos 20)Wrr + (sin 26 cos 0) T-T-},ﬂ

® Helicity structure functions — elements of virtual photon
production helicity density matrix

® Photon decays into leptons — interference between
different virtual photon polarisations possible:

W T(+)>T+) W : Lol
W ToLL>T W, :T(+)— T(-)



Lam-Tung relation

® Hence: DY helicity structure functions: projections of DY
amplitudes on virtual photon polarization states

® | am-Tung relation (1980, 1982): vanishing combination of DY
structure functions at leading

/ ;’r L / f’r -
twist up to NNLO in ollinear@cd W — 2Wrpp =0

® Advantage of Lam-Tung relation: it is invariant under frame
rotations w.r.t. axis perpendicular to reaction plane

® Lam-Tung relation breaking by higher order QCD effects
related to parton k.

® At twist 4 — non-zero contribution — enhanced higher twist
contributions



Leading diagrams of forward Drell-Yan

B
e Asymmetric kinematics: x, >> X,

® Dominance of the quark sea — driven by gluon evolution

® Good approximation: gluon evolution followed by splitting
to quark (anti-quark) in the last step
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Forward Drell-Yan in dipole formulation

B 4 4
® |arge energy limit: conservation of transverse positions in scattering

® “Effective color dipole” emerges from interference of photon emission
before and after scattering, y* carries fraction z of p* of incident
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® “Crossed” //
photon wave W\M\&
function:

® [nterference of photon

helicity states through
leptonic tensor
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Forward Drell-Yan in dipole formulation

U%’L (gp — v X) = / d*r th’L (2,7, M?,m¢) 0gq (12, 27)

aewz
Wy = [+ (10— 222K (pr) +m? 22 K3 (nr) )

ﬂ-2
Wi = == MP(1—2)°Ki(nr) | | o ==
n F modified dipole -------- 3
1010 L
Formalism proposed and developed by: = "¢ ,
g 103 gl\«‘I:*l.EBGEV(xlD
:; 107%‘ M=4.75 GeV (x105)
® Brodsky, Hebecker, Quack (1997) S E e o)
® B. Z. Kopeliovich, J. Raufeisen, %
A. V. Tarasov (2001) T MooV
® Gelis,Jalilian-Marian (2002) = 107 F wesscev a0
® Raufeisen, Peng, Nayak (2002): plot —» "=
® V. Goncalves et al, A. Szczurek et al. 0t (ff“), o
10_2 B =8.23I(_'.e\f I:xlﬂl IMI=I8iT:1(_'.'e\f
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Inclusive forward Drell-Yan at LHC: higher twist

corrections

® Golec-Biernat, Lewandowska,
Stasto, 2010 (plot):

twist content of forward Drell-
Yan within the GBW saturation
model for dipole cross-section,
done for the inclusive cross-
section (in T and the lepton
azimuthal angle)

® Predictions for the LHC (plot)
large higher twist corrections

within kinematical range of
LHC (LHCD)
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Forward Drell-Yan cross-section in kT factorisation

do AN Neom ) L
- = — : L77 (€2 1z plrp/z
drpdM2dQ@qr — (2m)2(Py - By)? M2 7h(1 - 2) (6 L‘ Pler/2)
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Mellin representation of forward Drell-Yan structure
functions:
I S
® Standard procedure: position-space — Mellin moments space

s -2(
W / dz op(xp/= )f ¢ ,J(%)( ??")D) (i)?'(QT S, z)
B Convolution/ofM’e’Ilin transform of 2 = M2
dipole cross section and impact factor :

: 2(2m)* M* 2\’
D;(qr. s, z) = (27) /dgr (fzz r) D, (qr, 1, 2)

2
em

® Dipole cross section encodes

QCD dynamics, e.g. small x 5(—s) = / dr” (02~ &(p)
evolution, higher twists 0
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Two descriptions of dipole cross-section in kT
factorisation:
I S

Phenomenological: eikonal multiple gluon ladder exchange — GBW
model — twist 2n contribution enhanced by x™ at small x

BFKL description: based on LL BFKL cross-section and its twist
decomposition

Higher twist effects extracted from singularities of the BFKL kernel
in Mellin space, x(y), atinteger values of anomalous

dimensions s — Yy
o (y) ~ exp (c log(1/x) a_ x(y))
&) = 291 — &) - yA-y) ~ 1/(y-n)

— essential singularities of Mellin cross-section
Saddle point treatment of y-integral of BFKL amplitudes

— power suppression x° of higher twist terms in LL BFKL
amplitudes
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Previous findins: Mellin representation of DY impact
factors

I 4 4
® Mellin transforms of impact factors for all DY structure functions
found, e.g.:

. 2 (2I%(s + 1) _ "
(I)L(QT!S! ~) = = { - ‘ QF]_ (5+ l?'S+l?l?_—
) 2 | 1+ g3/n2 n2
2
— (s 4+ 1) (s +2) o F} (5' + 1,5+ 2.1, qi;) }

=z

_ —s5—3

) 1 27 4t

O .S, 2) = ‘ L Mt 2
rr(qr. s, z) 9.2 {r(1 — s)sinms q%/'?ig ( ’ ?73) e

[(l—f—qg) (l—i—qg(%—i—QJ) gFl(—€+l%+ll qT )
?;z nz qT+?7z
1+2 2( + 1) ) oF (—s+1s+2.1, gq%
n? | U qp +n?

A 2
i/ (s + 1)T(s +2) oF, (.5-+1..s-+2.2.qi;)}
l+qT/?;z n?

® Useful in BFKL approach and for twist analysis
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Mellin treatment of BFKL DY amplitudes

B 4 4
® BFKL essential singularities at twist poles via Laurent expansion

W = /dZ p(xp/z)oi(qr,z,Y)

aj (qTa 2 Y) — f

C

ds ZQQ_% 8 X
5(5,Y)Pi(gr, —:
2m (ﬂ,{?(l — 2) (s, Y)®(qr, —s,2)

> 2n
oilar, 2 Y) =3 o (gr, 2,Y)

n=1

€

n Y —_
J:EQTE')(qT,z,Y) RQ _Tlf/dﬂh (2 ) e qr, z, Y)exp (FP t+ — %s ”9)

(3—*.5,9

Xty = x (—n+ee?) - -
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Mellin treatment of BFKL DY amplitudes

I S
9 n—eexpif

. . . . (n

B (e, qr, 2, Y) = *‘“”9( Z ) ®;(qr,n — e’ 2) D(—n + ee'?) Y xrea

1—z

o0

hEQn)(_J g, 2, Y) Z aq(in)J (Eezg)ﬂ’t
m=0
o (qr,2,Y) = 2sz( ) 3 a2 (“"—Y)?I (2Va:Y1)
J L ‘M_{Q — m m 5
(2?1.} n agY 2 -
W, (JMQ) ng /dz a2Mig(xp/2) ( ; ) I (Qx/angt)

where t ~ log(M?)
® Integrals over the contour angle parameter 6 performed and
expansion coefficients a_¢" evaluated analytically — analytic

form of expansions of BFKL forward Drell-Yan structure functions
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Results for forward DY BFKL structure functions

® In LL BFKL subleading twist contributions found to decrease exponentially
with rapidity!

® Exponential increase in rapidity found only for the leading twist
® Example of results for g. -integrated structure functions

® Lam-Tung relation fulfilled in double logarithmic limit, broken beyond

~ (9 Q 22
Wj( ) —0y, (411;2)/ dz fj(z)l — o(rr/z)
co . 2
- (2); asY ) 2 ( \/ AM )
X a,, T | 24/ asY In—5—
mz_o (ln aM2/Q3)) ™ Q3
4 4 1—
adt = —3 alPt = -3 ( 2+ 2vp + In +¢(5/2))
2 2 1—
&[()Q)TT = -3 agQ)TT 5 ( 34+ v —1In > +ln(64) -+ 27,/)(5/2))
aPt = o, aP*H = 0.5236
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Results: inclusive Drell-Yan at LHC: LHCb data from
BFKL and GBW dipole cross sections

[pb/GeV] | A = LHCbdata, E 4= 7 TeV
100 - —h e GBW model
: —:— @ & A BFKL model
] HiH
] A
10 = "
© :
© 9. .
3 A
- 8
0,1 _E A
1 [
T T T T T T T T
10 100
M[GeV]

® Good description in terms of GBW, BFKL somewhat above data
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Results: inclusive Drell-Yan at the LHC: ATLAS data

] m ATLASdata, E =7 TeV
[pb/Ge\/] ] e GBW model
! Hi—‘ A BFKL model
—
of T
= ]
% "
go] - &
®
14 z
| o

10 20 30 40 50 60 70 |
M[GeV]
® Good description in terms of BFKL, GBW somewhat below data

® However: central kinematics — expected terms beyond forward DY
approximation
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DY at LHC: structure functions from BFKL vs GBW

I
e Similar behavior of W_and W _in BFKL and GWB, butsignificant differences

in “inteference” structure functions W__and W
1035',1.;,"'[ T AL | T LI LAY | T L LR | ' T """‘E

AR AR —— GBW
107 W - - - BFKL

1 10 100 1000 10000
M? [GeV?]
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Lam-Tung relation in GBW model

B
® Lam-Tung relation: at leading twist up to NNLO:

1-"1-“’1 — 2 I-"I"’TTT — 0

® Holds in the GBW model at twist 2
® At twist 4 — non-zero contribution — enhanced higher twist

contributions

W —owll = o

® qT-integrated
cross-section also
shows breaking of

Lam-Tung relation

Qs [ AMB(1 — 2)?
e / = plaer/2)" ——— ,(2 .
1V TR [QT + M=(1 — Z)]

/ (”f) _ 2{{_,}?) dQQT = 27.’00312 (ITEQ - QIT}?)

Q% J 1 M2(1 — &
- QWUOJE}{K-)(‘lfFJ [—19 +12yp + 12In ( (Qg IF))] +
- <0

N g fl g g.;)(;z:p/:_) 22— o(xrp) }
3 Jap 1—=
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Lam-Tung relation from GBW and BFKL Vs =14 TeV

® Striking difference in Lam — Tung relation breaking
® Subleading twist effects in GBW vs leading twist in BFKL
o Importance of parton k_ effects in BFKL

M? =5 GeV?

—— BFKL Exact
...... GBW Exact
............. GBW twist 2

—-—- GBW twist 4 | 1

100

0.5F

0.4

. 0.3

< 02k
0.1

0.0

M? = 20 GeV?
; T T T T T T T
-\_\ ——BFKL Exact ||
R Rt GBW Exact
B ,\ ............. GBW thSt 2|
i '\‘ —-—- GBW twist 4 | -
1 10 100
a, [GeV]
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Lam-Tung relation from GBW and BFKL
in q, integrated structure functions

® |am - Tung relation breaking in BFKL occurs at any mass
0.35 ——rrrm

Vs = 14 TeV

0.30
0.25

0.20

Ao' ﬁ2

0.15
0.10

0.05

0.00

_0.05- 1 gl 1 ||':::||||| 1 Ll ) 11l
1 10 100 1000 10000

M? [GeV?]

® Lam — Tung relation breaking at larges masses is an excellent probe
of gluon k.
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Conclusions

Forward Drell Yan process is of great interest for determination
parton density functions at small x, studies of small x
resummation and higher twist effects

Angular distributions of DY leptons give access to four
independent DY structure functions

We provide estimates of both small x and higher twist effects in
forward DY scattering using BFKL and GBW approach

The models were tested against LHC data: good description of
angular averaged cross-sections was found

Lam-Tung relation is particularly interesting observable with
enhanced small x and higher twist sensitivity, it also probes
parton k.

Essentially different predictions obtained for higher twists and
Lam-Tung relation breaking from GBW and BFKL

THANKS!
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