

Spin and Forward Physics with STAR

Carl Gagliardi

Texas A&M University

for the STAR Collaboration

Outline

- Introduction
- Longitudinal spin structure: gluon and anti-quark polarization
- Transverse spin structure: TMDs and visualizing color interactions
- Spin and p+A physics at forward rapidities
- Physics with tagged forward protons

Fundamental questions regarding proton spin

- How do quarks and gluons conspire to provide the proton's spin ½?
 - What is the role of gluons?
 - Reminder gluons contribute ~50% of the proton's momentum
 - What is the role of sea quarks?
 - How much orbital angular momentum is needed?

What is the dynamic structure of the proton?

- How do we go beyond longitudinal parton distribution functions to a 2D+1 picture in coordinate and momentum space?
- Can we visualize color interactions in QCD?

RHIC: the Relativistic Heavy Ion Collider

- Search for and study the Quark-Gluon Plasma
- Explore the partonic structure of the proton
- Determine the partonic structure of nuclei

RHIC: the world's first (and only!) polarized hadron collider

- Spin varies from rf bucket to rf bucket (9.4 MHz)
- Spin pattern changes from fill to fill
- Spin rotators provide choice of spin orientation
- Billions of spin reversals during a fill with little depolarization

Longitudinal spin structure: Gluon and anti-quark polarization

Gluon polarization without RHIC data

Unpolarized input data

Unpolarized PDFs

Gluon polarization without RHIC data

$$S_z=rac{1}{2}=rac{1}{2}\Delta\Sigma+\Delta G+\langle L_z
angle$$
 Polarized DIS: ~0.3 Poorly constrained by DIS

Polarized PDF

Kinematic region of **polarized** measurements

Exploring gluon polarization at RHIC

$$A_{LL} = rac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \propto rac{\Delta f_a \Delta f_b}{f_a f_b} \hat{a}_{LL}$$

 Δf : polarized parton distribution functions

For most RHIC kinematics, gg and qg dominate, making A_{LL} for jets sensitive to gluon polarization.

 $Jet x_{\tau} = (= 2p_{\tau} / \sqrt{s})$

0.05

Inclusive jet A₁₁ from the 2009 RHIC run

STAR PRL 115, 092002

- STAR measured A_{LL} for inclusive jets at 200 GeV during the 2009 RHIC run
- Results draw a narrow road through the previous predictions
- Far more precise than previous measurements
- Systematically larger than expected by DSSV'08
- Positive gluon polarization in the sampled region x > 0.05

Gluon polarization with RHIC data

- Both DSSV and NNPDF have released new polarized PDF fits
- Both find the 2009 RHIC results provide significantly tighter constraints on gluon polarization than previous measurements
- Both find evidence for positive gluon polarization in the region x > 0.05

- DSSV: $0.19^{+0.06}_{-0.05}$ at 90% c.l. for 0.05 < x

- NNPDF: 0.23 ± 0.07 for 0.05 < x < 0.5

What's next?

 Need to increase precision in the currently sampled region to consolidate the observation of non-zero gluon polarization

What's next?

- Need to increase precision in the currently sampled region to consolidate the observation of non-zero gluon polarization
- Need to extend sensitivity to lower x_g where current extrapolations have very large uncertainties

Next steps

- RHIC had very successful runs with 510 GeV pp collisions during 2012 and 2013
 - Higher center-of-mass energy probes lower x partons
- A_{LL} at 510 GeV is well described by global fits that previously gave a good description of the 2009 measurements at 200 GeV

Next steps

- RHIC had very successful runs with 510 GeV pp collisions during 2012 and 2013
 - Higher center-of-mass energy probes lower x partons
- A_{LL} at 510 GeV is well described by global fits that previously gave a good description of the 2009 measurements at 200 GeV
- STAR took additional 200 GeV pp data during 2015
 - Will reduce uncertainties for A_{LL} at 200 GeV by a factor of ~1.6

Further constraining the x dependence

- Di-jet measurements sample a much narrower range of x values than inclusive jets
- Use to constrain the shape of $\Delta g(x)$
 - Minimize extrapolation errors outside the sampled region

Di-jets at forward rapidity and higher √s

- Di-jet measurements at forward rapidity and higher \sqrt{s} provide more precise mapping of $\Delta g(x)$ at lower x
 - Reaching x of ~0.02 now
 - Will push well below $x \sim 0.01$ with additional data that has already been recorded
 - Will reach $x \sim 10^{-3}$ in several years with a forward upgrade

Why is $\Delta\Sigma$ so small?

$$\Delta \Sigma = \int_{0}^{1} (\Delta u + \Delta \overline{u} + \Delta d + \Delta \overline{d} + \Delta s + \Delta \overline{s}) dx$$

- Polarized inclusive DIS data measure $\Delta u + \Delta \bar{u}$ and $\Delta d + \Delta \bar{d}$
- Polarized semi-inclusive DIS data provide flavor separation, but uncertainties remain large

- FNAL E866 found surprising structure in the unpolarized anti-quark distributions
- Might the polarized anti-quark distributions also contain surprises?
- Can separate polarized quark and antiquark flavors with W production
 - Only left-handed quarks and righthanded anti-quarks participate
 - Complementary to semi-inclusive DIS
 - No fragmentation function uncertainties
 - Extremely clean theoretically

W A_I and anti-quark polarization

- W^{+/-} asymmetries from 2012 data hint at $\Delta \overline{u} > \Delta d$
 - This is opposite from the unpolarized distributions

W A₁ and anti-quark polarization

- W^{+/-} asymmetries from 2012 data hint at $\Delta \overline{u} > \Delta d$
 - This is opposite from the unpolarized distributions
- Preliminary results from 2013 with much smaller uncertainties strengthen the hint

Transverse spin structure: TMDs and visualizing color interactions

Why TMDs?

$$x f_1(x, k_T, S_T)$$

- Image the transverse and longitudinal (2+1d) structure of the nucleon and nuclei
 - Tomography of the nucleon!
- Access to transverse momenta at non-perturbative scales
 - Probe at the confinement scale
- Exhibit correlations arising from spin-orbit effects

Initial state: TMDs and Twist-3

Twist-3

Requires 2 scales: Hard scale Q^2 Soft scale p_T

SIDIS, Drell-Yan, W/Z, ...

Access the full transverse momentum dynamics k_T

 $-\int d^{2}k_{\perp} \frac{k_{\perp}^{2}}{M} f_{1T}^{\perp q}(x, k_{\perp}^{2})|_{SIDIS} = T_{q,F}(x, x)$

Single hard scale: p_T

Appropriate for inclusive $A_N(\pi^0, \gamma, jet)$

Access the average transverse momentum $\langle k_T \rangle$

Separating initial- from final-state effects

Sivers or twist-3 mechanisms:

- Signatures:
 - A_N for jets or direct photons
 - A_N for W^{+/-}, Z⁰, Drell-Yan
 - A_N for heavy flavor (gluon)
- Sivers NOT universal
 - Sign change from SIDIS to W, Z, and Drell-Yan

Collins or novel FF mechanisms:

- Signatures:
 - Collins effect
 - Interference fragmentation functions (IFF)
 - A_N for pions → novel FF
- Collins predicted to be universal

Color interactions in QCD

Controlled non-universality of the Sivers function

A_N for direct photon has related sign change in Twist-3

Critical test of factorization

Opportunity to visualize the repulsive interaction between like color charges

Can explore all of these observables in 510 GeV pp collisions at RHIC

A_N for W production

PRL 116, 132301

- STAR performed an exploratory measurement of A_N for W production with a small data set recorded in 2011
 - W kinematics fully reconstructed
- Favors sign change if evolution effects are modest
 - TMD evolution is non-perturbative at low k_{\perp} no absolute theory predictions

Definitive measurement

- See the sign change if evolution effects are less than factor of 5
- Probe anti-quark Sivers function for the first time
- Directly measure the evolution effects
 - Need new data to constrain non-perturbative contribution
 - Access similar observables at comparable x but very different Q²
 - W and Z A_N at 510 GeV
 - Drell-Yan at 510 GeV

Recently completed 2017 RHIC run

A_N for direct photon

- Sensitive to the sign change in the Twist-3 formalism
- Collinear objects, but more complicated evolution than DGLAP
 - Not sensitive to TMD evolution
- Provides an indirect constraint on the Sivers function via their integral relationship

Not a replacement for $A_N(W, Z, DY)$, but an important complementary piece of the puzzle

Transversity

- Quark polarization along spin of a transversely polarized proton
 - Third collinear, leading twist distribution
 - Chiral odd
- Before STAR, only observed in SIDIS combined with e⁺e⁻
- Much less data than for helicity
- Several recent global analyses including:
 - Collins effect input:
 - PRD 93, 014009
 - PRD 92, 114023
 - IFF input:
 - PRD 94, 034012
 - All show large uncertainties

First transversity signals in hadronic collisions

- Significant measurements of transversity convoluted with:
 - Di-hadron interference fragmentation function (IFF)
 - STAR data now in preliminary global analysis (Radici, DIS 2017)
 - Collins fragmentation function
- Both have similar magnitudes in 200 and 500 GeV pp collisions
- Observations of transversity at very high scales
 - Q² up to 900 GeV² for Collins at 500 GeV
- Complementary results that obey different evolution equations

π^{+/-} azimuthal distribution in jets

- First Collins effect measurements in pp collisions are reasonably described by two recent calculations that convolute the transversity distribution from SIDIS with the Collins FF from e⁺e⁻ collisions
 - Tests the predicted universality of the Collins FF
 - TMD evolution effects appear to be small

Additional azimuthal modulations

Inclusive jet A_N

 Sensitive to the gluon Sivers function via the Twist-3 relationship

"Collins-like" effect

 World's first ever limit on linearly polarized gluons in a polarized proton

Projected uncertainties for upcoming results

Transversity x Collins

- Final Collins results from 200 GeV collisions will be coming soon
- Recorded > 10 times as much data at 510 GeV in 2017 as in 2011
 - Precision data at fixed x, different \sqrt{s} ideal to constrain TMD evolution
- Also have data for a first look at the Collins effect in p+Au collisions

Spin and p+A physics at forward rapidities

Transverse spin asymmetries in high energy p+p

- Large transverse single-spin asymmetries over a very wide range of \sqrt{s}
- Naïve collinear pQCD predicted A_N ~ 0.001
- May arise from
 - Initial-state effects: Sivers effect / twist-3
 - Final-state effects: Transversity + Collins fragmentation function
 - Or a combination of the two

STAR Forward Meson Spectrometer: FMS

- Pb-glass EM calorimeter covering 2.6 < η < 4 and full azimuth
 - Neutral pions / eta / EM jet-like events
 - Direct photons with addition of Pre-shower before 2015 run
 - Drell-Yan and J/ψ with addition of Post-shower before 2017 run

Transverse spin asymmetries in high energy p+p

- Large transverse single-spin asymmetries over a very wide range of \sqrt{s}
- Naïve collinear pQCD predicts A_N ~ 0.001
- May arise from
 - Initial-state effects: Sivers effect / twist-3
 - Final-state effects: Transversity + Collins fragmentation function
 - Or a combination of the two
- Signal doesn't seem to fall-off at high p_T
 - Maybe something else ?

Forward π⁰ A_N in 200 GeV pp

A_N **vs. Energy,** averaged over pseudo-rapidity.

Compare 3 selection criterion based on photon energy outside the cone (all with 35mR cone and no soft E cut)

- π⁰ with opposite-side photons or no additional photons have similar asymmetries
- π⁰ with additional same-side photons lead to much reduced A_N

A_N for EM jet-like events at 500 GeV

Cluster the observed FMS photon candidates using anti-k_T with R=0.7

π⁰-Jets – Exactly 2 photon candidates with $m_{\gamma\gamma} < 0.3$ GeV $Z_{\nu\nu} < 0.8$

2γ-EM-Jets (η + continuum) - $m_{\gamma\gamma} > 0.3 \text{ GeV}$

EM-Jets – with >2 photon candidates

- Isolated π⁰ also have large asymmetries in 500 GeV pp
- Asymmetries for jettier events are much smaller

Collins asymmetry for π^0 in EM jet

• Collins asymmetry of π^0 in EM jet-like events too small to explain the inclusive π^0 A_N

EM jet-like A_N vs number of photons

- A_N decreases as EM jets become jettier. Also is much smaller when there is a coincident jet at mid-rapidity
 - Raises serious questions how much of the large forward π⁰ A_N arises from 2 → 2 parton scattering

First π⁰ A_N results from *polarized* p+Au

Shaded bands show systematic uncertainty, dominated by dependence of A_N on observed BBC multiplicity → central vs. peripheral collisions

- CGC calculations in some of the possible channels predicted that A_N would be suppressed when scattering off a saturated gluon field
 - Preliminary results from 2015 find little suppression

Back-to-back angular correlations

- CGC predicts suppression of back-to-back correlations
- PHENIX found evidence in 200 GeV d+Au collisions
- STAR 2015 data are being analyzed for π⁰π⁰ and EM jet EM jet azimuthal correlations in pp, p+AI, p+Au (and d+Au in 2016)
 - Still working on FMS gain uniformity and stability
 - Both cancel out in A_N

Scanning the FMS $\pi^0\pi^0$ correlation in p_T and x

With 2015 statistics, STAR can study the evolution of Q_s²(x) with A

Direct photon R_{pAu}

Data from p+Au run in 2015 (and 2023)

- Direct photon will provide:
 - Substantial improvement in our understanding of nuclear PDFs in the near term
 - Alternative observable and kinematics to EIC in the long term
- 2015 data analysis well underway

from world data: incl. LHC pA

Projected impact on gluon nPDFs

Physics with forward tagged protons

Roman pots in STAR

Current configuration

- Roman pots from pp2pp were installed 55 m each side of the STAR interaction region prior to the 2009 RHIC run
 - Had dedicated 4-day running time with special beam optics
- Roman pots were moved much closer to interaction point prior to the 2015 RHIC run (Phase II*)
 - Now can operate with normal RHIC beam optics
 - Integrated a large fraction of the total delivered luminosity during the 2015 (\sqrt{s} = 200 GeV) and 2017 (\sqrt{s} = 510 GeV) RHIC runs

Roman pots in STAR

- Roman pots from pp2pp were installed 55 m each side of the STAR interaction region prior to the 2009 RHIC run
 - Had dedicated 4-day running time with special beam optics
- Roman pots were moved much closer to interaction point prior to the 2015 RHIC run (Phase II*)
 - Now can operate with normal RHIC beam optics
 - Integrated a large fraction of the total delivered luminosity during the 2015 (\sqrt{s} = 200 GeV) and 2017 (\sqrt{s} = 510 GeV) RHIC runs

Ongoing analyses

Elastic scattering

- Central Exclusive Production (CEP)
 - $p+p \rightarrow p+X+p$
 - Diffractive X = particles, glueballs
- Single Diffraction Dissociation

- Took high-quality data on all three processes during the 2015 (200 GeV) run, and even more during the 2017 (510 GeV) run
 - Here only show preliminary 2015 results on CEP at 200 GeV
- Also looking at correlation of forward π⁰ A_N with Roman pot activity
 - Could a large fraction of the π^0 A_N be diffractive?

Identifying CEP: the $\pi^+\pi^-$ case

- Identification and momentum reconstruction of all final state particles provides the ability to ensure exclusivity of the system via momentum balance check
- Very small background!

π⁺π⁻ invariant mass distribution at 200 GeV

- Broad structure extending from π⁺π⁻ threshold to ~1 GeV
- Sharp drop at about 1 GeV
- Resonance-like structure between 1-1.5 GeV
 - Expect ~70K events with $M(\pi^+\pi^-) > 1$ GeV from full 2015 data set

π⁺π⁻ invariant mass distribution at 200 GeV

Invariant mass of $\pi\pi$, $p_{\tau}^{miss} < 0.1$ GeV/c, not acceptance-corrected, statistical errors only

- Broad structure extending from π⁺π⁻ threshold to ~1 GeV
- Sharp drop at about 1 GeV
- Resonance-like structure between 1-1.5 GeV
 - Expect ~70K events with $M(\pi^+\pi^-) > 1$ GeV from full 2015 data set
- Essential features are similar to measurements in pp at 63 GeV (AFS at ISR) and $p\bar{p}$ 1.96 TeV (CDF)

K+K⁻ invariant mass distribution at 200 GeV

- Prominent peak around 1.5-1.6 GeV
- Some enhancement in the f2(1270)/f0(1370) region
- In spectrum measured by WA102 (fixed target), there is a significant contribution from f0(980) not seen by STAR
 - K acceptance is very small at such low p_T
- Expect $\sim 10^4$ exclusive K^+K^- events in the full 2015 data set
 - Will permit cross section and partial wave analyses

What about orbital angular momentum?

- Generalized parton distributions (GPDs), measured via exclusive reactions, provide access to L_q and L_q
- Exclusive J/ψ production in ultra-peripheral collisions with transversely polarized p+p and p+Au provides access to the GPD E_g
 - The GPD E is responsible for orbital angular momentum
 - Only access world-wide to E_g before EIC
- First measurements started in 2015 enabled by the Roman Pot phase II* upgrade to STAR

Planned forward upgrade for the 2020's

- Forward di-jets will extend gluon polarization to x <~ 10⁻³
- Transverse spin phenomena:
 - Precision TMDs through jets at forward rapidity
 - Precision A_N(Drell-Yan) to complete the Sivers measurements
- Also an extensive suite of measurements in p+A collisions

Sivers and Collins coverage at RHIC

Kinematics of RHIC

- Dramatic extension in (x, Q^2) reach before EIC
- W production probes the highest Q² over a wide x range
- Precision tests of universality when EIC data become available

Drell-Yan R_{pA} at 200 GeV

Projected impact on sea quark nPDFs

- Similar statistics in 200 GeV pp, p+Au, p+Al
- Significant improvement in our knowledge of sea quark densities in heavy nuclei
- Significant extension of the Q² lever arm at low x relative to future EIC data

Conclusions

- The STAR Spin and Forward Physics programs have made a number of striking observations
- STAR has a huge body of additional spin and forward physics data under analysis
- The STAR Forward Upgrade will provide a bright future for STAR in the coming decade

 STAR is a key component of the RHIC Cold QCD program: an essential bridge between the physics of RHIC and the physics of the future Electron Ion Collider

STAR as a jet and di-jet detector

- Large and uniform acceptance makes STAR an excellent jet detector
- Good agreement with NLO predictions for both inclusive jet and di-jet cross sections