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Forward Physics at the LHC: from the

Pomeron structure to the search for quartic

anomalous coupling
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• Pomeron structure in terms of quarks/gluons

• Tests of BFKL resummation

• Anomalous quartic γγγγ couplings using intact protons
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Diffraction at Tevatron/LHC
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Kinematic variables

• t: 4-momentum transfer squared

• ξ1, ξ2: proton fractional momentum loss (momentum fraction of the
proton carried by the pomeron)

• β1,2 = xBj,1,2/ξ1,2: Bjorken-x of parton inside the pomeron

• M2 = sξ1ξ2: diffractive mass produced

• ∆y1,2 ∼ ∆η ∼ log 1/ξ1,2: rapidity gap
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What is AFP/CT-PPS?
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• Tag and measure protons at ±210 m: AFP (ATLAS Forward Proton),
CT-PPS (CMS TOTEM - Precision Proton Spectrometer)

• All diffractive cross sections computed using the Forward Physics Monte
Carlo (FPMC)

• Sensitivity to high mass central system, X, as determined using
AFP/CT-PPS: Very powerful for exclusive states: kinematical
constraints coming from AFP and CT-PPS proton measurements
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Hard diffraction at the LHC

• Dijet production: dominated by gg exchanges; γ+jet production:
dominated by qg exchanges (C. Marquet, C. Royon, M. Saimpert, D.
Werder, Phys.Rev. D88 (2013) no.7, 074029 )

• Jet gap jet in diffraction: Probe BFKL (C. Marquet, C. Royon, M.
Trzebinski, R. Zlebcik, Phys. Rev. D 87 (2013) 034010; O. Kepka, C.
Marquet, C. Royon, Phys. Rev. D79 (2009) 094019; Phys.Rev. D83
(2011) 034036 )

• Three aims

– Is it the same object which explains diffraction in pp and ep?

– Further constraints on the structure of the Pomeron as was
determined at HERA

– Survival probability: difficult to compute theoretically, needs to be
measured, inclusive diffraction is optimal place for measurement
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Inclusive diffraction at the LHC: sensitivity to gluon density

• Predict DPE dijet cross section at the LHC in AFP acceptance, jets
with pT >20 GeV, reconstructed at particle level using anti-kT algorithm

• Sensitivity to gluon density in Pomeron especially the gluon density on
Pomeron at high β: multiply the gluon density by (1− β)ν with
ν = −1, ..., 1

• Possibility to measure Reggeon ontribution by looking at dijet
production at high ξ

• Dijet mass fraction: dijet mass divided by total diffractive mass
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Inclusive diffraction at the LHC: sensitivity to quark densities

• Predict DPE γ+jet divided by dijet cross section at the LHC

• Sensitivity to universality of Pomeron model

• Sensitivity to quark density in Pomeron, and of assumption:
u = d = s = ū = d̄ = s̄ used in QCD fits at HERA

• W asymmetries in single diffractive events are also sensitivite to quark
densities in Pomeron, see A. Chuinard, C. Royon, R. Staszewski, JHEP
1604 (2016) 092

M(GeV)
400 600 800 1000 1200 1400 1600 1800 2000

/d
M

di
je

t
σ

/d
M

/d
je

t
γ σd

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-310×

d/u = 0.25

d/u = 0.5

d/u = 1

d/u = 2

d/u = 4

d = s, u + d + s = const.

 < 0.15ξ0.015 < 
-1 Ldt=300pb∫



7

Looking for BFKL effects

• Dokshitzer Gribov Lipatov Altarelli Parisi (DGLAP): Evolution in Q2

• Balitski Fadin Kuraev Lipatov (BFKL): Evolution in x
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Jet gap jet events in diffraction

• Study BFKL dynamics using jet gap jet events in DPE

• See: C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87
(2013) 034010
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Search for γγWW , γγγγ quartic anomalous coupling
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• Study of the process: pp → ppWW , pp → ppZZ, pp → ppγγ

• Standard Model: σWW = 95.6 fb, σWW (W = MX > 1TeV ) = 5.9 fb

• Process sensitive to anomalous couplings: γγWW , γγZZ, γγγγ;
motivated by studying in detail the mechanism of electroweak symmetry
breaking, predicted by extradim. models Concentrate on γγγγ
anomalous coupling in this talk

• Rich γγ physics at LHC: see papers by C. Baldenegro, E. Chapon, S.
Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert:
Phys. Rev. D78 (2008) 073005; Phys. Rev. D81 (2010) 074003;
Phys.Rev. D89 (2014) 114004 ; JHEP 1502 (2015) 165; Phys. Rev.
Lett. 116 (2016) no 23, 231801; Phys. Rev. D93 (2016) no 7, 075031;
JHEP 1706 (2017) 142
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Anomalous couplings studies in WW events

• Reach on anomalous couplings studied using a full simulation of the
ATLAS detector, including all pile-up effects; only leptonic decays of
W s are considered

• Signal appears at high lepton pT and dilepton mass (central ATLAS)
and high diffractive mass (reconstructed using forward detectors)

• Cut on the number of tracks fitted to the primary vertex: very efficient
to remove remaining pile-up after requesting a high mass object to be
produced (for signal, we have two leptons coming from the W decays
and nothing else)
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Results from full simulation

• Effective anomalous couplings correspond to loops of charged particles,
Reaches the values expected for extradim models (C. Grojean, J. Wells)

• Improvement of “standard” LHC methods by studying
pp → l±νγγ (see P. J. Bell, ArXiV:0907.5299) by more than 2
orders of magnitude with 40/300 fb−1 at LHC (CMS mentions
that their exclusive analysis will not improve very much at high
lumi because of pile-up)

5σ 95% CL

L = 40 fb−1, µ = 23 5.5 10−6 2.4 10−6

L = 300 fb−1, µ = 46 3.2 10−6 1.3 10−6
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γγ exclusive production: SM contribution

• QCD production dominates at low mγγ , QED at high mγγ

• Important to consider W loops at high mγγ

• At high masses (∼ 750 GeV), the photon induced processes are
dominant

• Conclusion: Two photons and two tagged protons means
photon-induced process
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Motivations to look for quartic γγ anomalous couplings

• Two effective operators at low energies

• γγγγ couplings can be modified in a model independent way by loops
of heavy charge particles

ζ1 = α2
emQ

4m−4Nc1,s

where the coupling depends only on Q4m−4 (charge and mass of the
charged particle) and on spin, c1,s depends on the spin of the particle
This leads to ζ1 of the order of 10−14-10−13

• ζ1 can also be modified by neutral particles at tree level (extensions of
the SM including scalar, pseudo-scalar, and spin-2 resonances that
couple to the photon) ζ1 = (fsm)−2d1,s where fs is the γγX coupling
of the new particle to the photon, and d1,s depends on the spin of the
particle; for instance, 2 TeV dilatons lead to ζ1 ∼ 10−13
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Warped extra-dimensions

• Which models/theories are we sensitive to using AFP/CT-PPS

• Beyond standard models predict anomalous couplings of ∼10−14-10−13

• Work in collaboration with Sylvain Fichet, Gero von Gersdorff
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One aside: what is pile up at LHC?

• The LHC machine collides packets of protons

• Due to high number of protons in one packet, there can be more than
one interaction between two protons when the two packets collide

• Typically up to 50 pile up events
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Search for quartic γγ anomalous couplings
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• Search for γγγγ quartic anomalous couplings

• Couplings predicted by extra-dim, composite Higgs models

• Analysis performed at hadron level including detector efficiencies,
resolution effects, pile-up...
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Search for quartic γγ anomalous couplings
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• No background after cuts for 300 fb−1 without needing timing
detector information

• Exclusivity cuts using proton tagging needed to suppress backgrounds
(Without exclusivity cuts using CT-PPS: background of 80.2 for 300
fb−1)
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High lumi: Search for quartic γγ anomalous couplings:
Results from effective theory

Luminosity 300 fb−1 300 fb−1 300 fb−1 3000 fb−1

pile-up (µ) 50 50 50 200

coupling ≥ 1 conv. γ ≥ 1 conv. γ all γ all γ
(GeV−4) 5 σ 95% CL 95% CL 95% CL

ζ1 f.f. 8 · 10−14 5 · 10−14 3 · 10−14 2.5 · 10−14

ζ1 no f.f. 2.5 · 10−14 1.5 · 10−14 9 · 10−15 7 · 10−15

ζ2 f.f. 2. · 10−13 1. · 10−13 6 · 10−14 4.5 · 10−14

ζ2 no f.f. 5 · 10−14 4 · 10−14 2 · 10−14 1.5 · 10−14

• Unprecedented sensitivities at hadronic colliders: no limit exists
presently on γγγγ anomalous couplings

• Reaches the values predicted by extra-dim or composite Higgs models

• Introducing form factors to avoid quadratical divergences of scattering
amplitudes due to anomalous couplings in conventional way:
a → a

(1+Wγγ/Λcutoff )2
with Λcutoff ∼ 2 TeV, scale of new physics

• Full amplitude calculation leads to similar results: avoids using a form
factor and parameters dependence of the results

• Conclusion: background free experiment
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Full amplitude calculation

• 5 σ discovery sensitivity on the effective charge of new charged fermions
and vector boson for various mass scenarii for 300 fb−1 and µ = 50

• Unprecedented sensitivites at hadronic colliders reaching the values
predicted by extra-dim models - For reference, we also display the result
of effective field theory (without form factor) which deviates at low
masses from the full calculation

• For QJeff = QN1/4 = 4, we are sensitive to new vectors (fermions) up
to 700 (370) GeV for a luminosity of 300 fb−1
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γγγZ quartic anomalous coupling

• Look for Zγ anomalous production

• Z can decay leptonically or hadronically: the fact that we can control
the background using the mass/rapidiy matching technique allows us to
look in both channels (very small background)
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γγγZ quartic anomalous coupling

• Background of about 3.1 events for 300 fb−1, and about 25 events of
signal for a coupling of 4 10−13 GeV−4

• C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1706
(2017) 142
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γγγZ quartic anomalous coupling

• Reach on γγγZ anomalous coupling

• Best expected rach at the LHC by about two orders of magnitude

• Advantage of this method: sensitivity to anomalous couplings in a
model independent way: can be due to wide/narrow resonances, loops
of new particles as a threshold effect
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Removing pile up: measuring proton time-of-flight

• Measure the proton time-of-flight in order to determine if they originate
from the same interaction as our photon

• Typical precision: 10 ps means 2.1 mm
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Invisible objects in CMS

• Production of pairs of magnetic monopoles

• Production of pairs of dark matter particles

• Signature: nothing in ATLAS/CMS, 2 protons of high mass in CT-PPS,
AFP...

• How to see them: Request high mass objects in roman pots, found
vertex where these protons are coming from using timing detectors,
request nothing in CMS/ATLAS pointing to that vertex.

• A few issues: Trigger rate, background? (we do not see anything in
CMS/ATLAS and any quasi-elastic event is a background)



25

Conclusion

• Better constraints on gluon distribution in Pomeron, sensitivity to
differences in quark distributions

• Jet gap jet events in diffraction: sensitivity to BFKL resummation
effects, ∼15-20% of DPE jets are jet gap jet events!

• γγγγ, γγZZ, γγWW , γγγZ anomalous coupling studies

– Exclusive process: photon-induced processes pp → pγγp (gluon
exchanges suppressed at high masses):

– Theoretical calculation in better control (QED processes with intact
protons), not sensitive to the photon structure function

– “Background-free” experiment and any observed event is signal

– NB: Survival probablity in better control than in the QCD (gluon) case

• CT-PPS/AFP allows to probe BSM diphoton production in a model
independent way: sensitivities to values predicted by extradim or
composite Higgs models

• Search for invisible objects

• Search for wide resonances: see talk by Jordan
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How to see invisible events? Some ideas...

• The vertex where dark matter particles, monopoles are produced is not
known

• We assume that the two protons originate from that vertex and we
measure the time of flight of produced particles

• We now assume that we measure the time-of-flight of all particles
produced in the very forward region (ZDC...) and we can get that
information at trigger level; this means that we know from which vertex
these particles are originating

• We need to request that there is incompatibility between the two
proton vertex (found using time detectors) and the vertex found using
particles in very forward region

• This requires few upgrades: timing measurements in forward detectors,
possibility of triggering on high mass proton pairs


