Contributions of diffraction to forward photon production at 13 TeV with the ATLAS-LHCf detectors

Qi-Dong Zhou
Nagoya University (JP)
on behalf of the ATLAS and LHCf Collaborations

HESZ 2017, Nagoya Japan, 26-29 Sep. 2017

Outline

Introduction

- Motivation of measurement of diffractive contribution to LHCf results
- MC study for diffraction identification.
 - Methodology of diffraction selection
 - Efficiency and purity of diffraction identification by common data
 - Low mass diffraction selection
- ◆ First ATLAS-LHCf joint analysis.
 - Data analysis method
 - Systematic uncertainties
 - Results
- Summary

Motivation

◆ Measurement of forward neutral energy spectra is important for verifying and improving the hadronic interaction models (widely used to simulate the cosmic-ray air showers).

- ♦ Discrepancies between data and model predictions for the forward photon spectra in pp \sqrt{s} = 13 TeV collisions.
- ► The excess of PYTHIA8 at E>3TeV due to over contribution from diff. processes.

Diffractive mass distribution

- Large discrepancy exists between models, especially, at low mass.
- Approaches to the diffraction treatment, implemented in the models are different, data is essential to constrain the parameters.

Detector acceptance

- Trigger efficiency (only for SD)
- Trigger condition of LHCf

Photon: $E_{Y} > 200 GeV$

Neutron: $E_n > 500 GeV$

- ATLAS
 Pass MBTS hit selection
 N_{hit}>2
- ◆ LHCf and ATLAS cover different diffractive mass range,
- ◆ Rapidity gap measured by ATLAS allows to distinguish the low mass diffractive contributions.

Diffraction identification by ATLAS-veto

Performance of ATLAS-veto selection

ATLAS-veto enable diffraction selection with high purity

Performance of ATLAS-veto selection

- ◆ Incident positions of photons on the LHCf-Arm1 calorimeter towers (region A and B) were reconstructed for the analyses.
 - A: $\eta > 10.94 \text{ and } \Delta \phi = 180^{\circ}$
 - B: $8.99 > \eta > 8.81$ and $\Delta \phi = 20^{\circ}$
- Photon energy larger than 200 GeV.

Eur. Phys. J. C77:212(2017)

ATLAS-veto enable diffraction selection with high purity

Low mass diffraction

- The inefficiency parts of ATLAS-veto are non-diff. and high mass diff..
- ATLAS-LHCf can access the low mass diffraction region, with high detection efficiency, experimentally.

Data used for ATLAS-LHCf joint analysis

- Common data acquisition with low luminosity configuration (3-5×10²⁸ cm² s⁻¹).
- ♦ Data taken at 22:32 1:30 (CEST) on June 12-13, 2015 during pp collisions at \sqrt{s} = 13 TeV
- ◆ Data used for this analysis corresponding to 0.191 nb⁻¹

Supplement: N_{tracks} distributions

- ♦ The contribution of non-diff. events at $N_{track} = 0$ is less than 2%.
- Most of the 2% are contamination of this analysis form non-zero charged particle events due to inefficiency of the track detection.
- 20% contribution of $N_{tracks} = 0$ in data while 5-20% predicted by models.

◆ SIBYLL2.3 and QGSJET-II-04 predict very small contribution of DD process

to $N_{track}=0$.

ATLAS-CONF-STDM-2017-02

Analysis method

- ◆ Photon spectra for two samples: w/o selection on ATLAS tracks $N_{w/o sel}(E)$, and w/ ATLAS-veto selection $N_{w/trk>0}(E)$
- Unfold the photon spectra for all inclusive events

$$N'_{ALL}(E) = C^{MH}_{all}(E) C^{PID}_{all}(E) N_{w/o sel}(E) \times (1 - R_{bkg,1})$$

 Unfold the photon spectra with at least ONE reconstructed track in InDet.

$$N'_{ch>0}(E) = C^{Track}(E) C^{MH}_{trk>0}(E) C^{PID}_{trk>0}(E) N_{w/trk>0}(E) x (1 - R_{bkg,2})$$

 C^{PID}_{all} , $C^{PID}_{trk>0}$: PID correction factor C^{MH}_{all} , $C^{MH}_{trk>0}$: Multi-hit rejection correction factor (MC base)

C^{Track}: Correction factor of ATLAS inner track detection (MC base)

◆ Calculate the photon spectra with no charged particle at lηl<2.5

$$N'_{ch=0}(E) = N'_{ALL}(E) - N'_{ch>0}(E)$$

N w/trk>0

Results: Photon spectra

ATLAS-CONF-STDM-2017-02

- ♦ Comparison between data w/ $N_{ch} = 0$ and model predictions
 - EPOS-LHC show a good agreement with data.
 - PYTHIA8212DL is a good agreement at the region of 8.81 < η
 < 8.99.

Results: Spectra ratios $N'_{ch=0}(E) / N'_{ALL}(E)$

ATLAS-CONF-STDM-2017-02

- At η>10.94, the ratio of data increased from 0.15 to 0.4 with increasing of the photon energy up to 4TeV.
- ◆ PYTHIA8212DL predicts higher fraction at higher energies.
- SIBYLL2.3 show small fraction compare with data at η>10.94.
- ♦ At 8.81 < η < 8.99, the ratio of data keep almost constant as 0.17.
- ◆ EPOS-LHC and PYTHIA8212DL show good agreement with data at 8.81 < η < 8.99.

14

Summary

- ◆ Diffraction is one of the poor constraint parts of the hadronic interaction models -> ATLAS-LHCf joint analysis.
- ◆ The efficiency and purity of diffractive event identification by ATLAS-LHCf joint analysis were estimated.
- ◆ ATLAS-veto can select the low mass diffraction.
- ◆ The diffractive contribution to the forward photon spectra were measured by ATLAS-LHCf joint analysis for the first time.
- ◆ EPOS-LHC show a good agreement with data on both spectra and ratio results.