Exclusive diffractive results from CMS and TOTEM at the LHC

Christophe Royon

University of Kansas, Lawrence, USA
On behalf of the CMS and TOTEM collaborations

HESZ Workshop, Nagoya, Japan, 26-29 September 2017

- Pion pair production
- WW pair production
- ullet Observation of exclusive $\mu\mu$ production in CT-PPS and prospects

What do we call Exclusive Diffraction / γ exchange events?

- Left diagram: Double Pomeron Exchange: some energy is "lost" in Pomeron remnants
- Next three diagrams: Exclusive production: the full energy is used to produce dijets, vector mesons, no energy loss
 - Dijet production via gluon exchange, QCD process (KMR)
 - Photon exchange
 - Vector meson production
- Possibility to reconstruct the properties of the object produced exclusively (via photon and gluon exchanges) from the tagged proton: system completely constrained
- Central exclusive production is a potential channel for BSM physics: sensitivity to high masses up to 1.8 TeV

CMS results on exclusive pion production

- Exclusive pion production in CMS
- Soft Pomeron exchange is dominant at low mass: Photon exchange contribution is much suppressed
- Measurement can be performed in special runs at low luminosity: no pile up, high cross section
- Experimental signature: only two opposite tracks from the same primary vertex; no additional signal in calorimeter; $p_T(\pi) > 0.2 GeV$; $|y(\pi)| < 2$
- Background computed directly using data and same sign events (pure background sample)

CMS results on exclusive pion production

- Data compared to the predictions from DIME MC (DPE) and STARLIGHT MC (ρ contribution)
- Disagreement with theory especially in normalization as expected: MC does not contain proton dissociation events (ArXiv:1706.08310)
- $\sigma_{\pi^+\pi^-} = 26.5 \pm 0.3(stat) \pm 5.0(syst) \pm 1.1(lumi) \ \mu b$

CMS results on exclusive WW production

- Look for WW exclusive production
- ullet Motivation: sensitive to $\gamma\gamma WW$ quartic anomalous couplings that could be a sign of new physics
- Quartic gauge anomalous $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings parametrised by a_0^W , a_0^Z , a_C^W , a_C^Z

$$\mathcal{L}_{6}^{0} \sim \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$\mathcal{L}_{6}^{C} \sim \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})$$

$$-\frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

Anomalous parameters equal to 0 for SM

One aside: what is pile up at LHC?

A collision with 2 protons and 2 photons

can be faked by one collision with 2 photons and protons from different collisions

- ullet Due to high number of protons in one packet, there can be more than one pp interaction when the packets collide
- Typically up to 50 pile up events in Run II (about 25-30 now)
- Analyses at high luminosity because of lower production cross section (exclusive WW, $\gamma\gamma...$): need to fight pile up!

CMS results on exclusive WW production

- Exclusive WW are rare (SM cross section of the order of 97 fb $^{-1} \rightarrow$ full luminosity needed and reject pile up background
- 2011 pp data at 7 TeV: 5.05 fb⁻¹
- 2012 pp data at 8 TeV: 19.7 fb⁻¹
- Exclusive selection: opposite sign $e\mu$ from common primary vertex, no extra track from vertex, $M_{e\mu}>20$ GeV to avoid low mass resonances, $p_T^{e\mu}>30$ GeV to remove Drell Yan and $\gamma\to\tau\tau$
- $\sigma(pp \to pWWp \to p\mu ep = 2.2^{+3.3}_{-2.0}$ fb at 7 TeV (SM 4.0 \pm 0.7 fb) and $\sigma(pp \to pWWp \to p\mu ep = 10.8^{+5.1}_{-4.1}$ fb at 8 TeV (SM: 6.2 \pm 0.5 fb) after correction for proton dissociation
- ullet Observed significance for 7 and 8 TeV combination: 3.4 σ

CMS results on exclusive ${\it WW}$ production

- ullet Most stringent limits on $\gamma\gamma WW$ quartic anomalous coupling
- JHEP08 (2016) 119

Dimension-6 AQGC parameter	7 TeV ($\times 10^{-4} \text{GeV}^{-2}$)	8 TeV (×10 ⁻⁴ GeV ⁻²)	7+8 TeV ($\times 10^{-4} \text{GeV}^{-2}$)
$a_0^{\rm W}/\Lambda^2(\Lambda_{\rm cutoff}=500{\rm GeV})$	$-1.5 < a_0^W/\Lambda^2 < 1.5$	$-1.1 < a_0^W/\Lambda^2 < 1.0$	$-0.9 < a_0^W/\Lambda^2 < 0.9$
$a_C^{W}/\Lambda^2(\Lambda_{\text{cutoff}} = 500 \text{GeV})$	$-5 < a_C^W / \Lambda^2 < 5$	$-4.2 < a_C^{W}/\Lambda^2 < 3.4$	$-3.6 < a_C^W / \Lambda^2 < 3.0$

What is CT-PPS?

- Tag and measure protons at ± 210 m: AFP (ATLAS Forward Proton), CT-PPS (CMS TOTEM Precision Proton Spectrometer)
- All anomalous coupling cross sections computed using the Forward Physics Monte Carlo (FPMC)
- Sensitivity to high mass central system, X, as determined using AFP/CT-PPS: Very powerful for exclusive states: kinematical constraints coming from AFP and CT-PPS proton measurements

What is CT-PPS?

- Joint CMS and TOTEM project: https://cds.cern.ch/record/1753795, see Fabio's talk
- LHC magnets bend scattered protons out of the beam envelope
- ullet Detect scattered protons a few mm from the beam (both sides of CMS)
- ullet First data taking in 2016: $\sim 15~{
 m fb}^{-1}$

Exclusive $\mu\mu$ production in CT-PPS

- Turn the LHC into a $\gamma\gamma$ collider: flux of quasi-real photons under the Equivalent Photon Approximation, dilepton production dominated by photon exchange processes
- Observation of exclusive dimuon production in CT-PPS
- First time a near-beam detector operates at a hadron collider at high luminosity
- Request only one proton tagged (< 1 event expected for double tagged events due to acceptance)
- Data-driven background estimate

CT-PPS alignment

- Step 1 Absolute alignment: Use elastic $pp \to pp$ events in a special alignment run where both horizontal and vertical roman pots get very close to the beam
- Step 2 Relative alignment: Use inclusive sample of protons triggered by CMS in standard runs and match distribution of proton track position to that of alignment runs
- See Fabio's talk

Observation of semi-exclusive dimuon production in CT-PPS: Strategy

• In order to select exclusive events: Look for correlation between direct proton ξ measurement using CT-PPS and using the dimuon system in CMS:

$$\xi^{\pm} = \frac{1}{\sqrt{s}} (p_T^{\mu_1} e^{\pm \eta^{\mu_1}} + p_T^{\mu_2} e^{\pm \eta^{\mu_2}}) \tag{1}$$

 $(\pm \eta \text{ solutions correspond to the protons in the } +z \text{ and } -z \text{ direction})$

• Expected backgrounds:

will fake signal (overlap with pile up or beam halo protons)

Event selection

- Request pair of opposite sign muons with $p_T>50$ GeV and $M_{\mu\mu}>110$ GeV above the Z boson peak
- To suppress background: Veto additional tracks around dimuon vertex (within 0.5 mm) and require back-to-back muons $|1-\Delta\Phi/\pi|<0.009$

Data driven background estimate

- Use sample of background protons from Z-peak events (data)
- Drell-Yan contribution: Count number of Z-peak events with $\xi(\mu\mu)$ and $\xi(\text{proton})$ correlated within 2σ and use MC to extrapolate from Z-peak region to signal region
- Double dissociative contribution: Mix double dissociative simulated events (LPAIR) and protons from data to derive number of matching events
- Total number of expected matching background events: $1.47 \pm 0.06(stat) \pm 0.52(syst)$

Observed signal

- First measurement of semi-exclusive di-muon process with proton tag
- CT-PPS works as expected (validates alignment, optics determination...)
- 17 events are found with protons in the CT-PPS acceptance and 12 $<2\sigma$ matching
- Significance for observing 12 events for a background of $1.47 \pm 0.06(stat) \pm 0.52(syst)$: 4.3 σ

Summary of 12 candidates properties

- Dimuon invariant mass vs rapidity distributions in the range expected for single arm acceptance
- No event at higher mass that would be in the acceptance for double tagging
- Highest mass event: 341 GeV
- CMS-PAS-PPS-17-001

Additional photon exchange processes: diphoton production

- ullet SM QCD production dominates at low $m_{\gamma\gamma}$, QED at high $m_{\gamma\gamma}$
- ullet Important to consider W loops at high $m_{\gamma\gamma}$
- At high masses (> 300 GeV), the photon induced processes are dominant
- Conclusion: Two photons and two tagged protons means photon-induced process

Search for quartic $\gamma\gamma$ anomalous couplings in AFP/CT-PPS

- Search for $\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- No background after cuts for 300 fb⁻¹
- Phenomenology studies in collaboration between C. Baldenegro, E. Chapon, O. Kepka, C. Royon, M. Saimpert, G. von Gersdorff, S. Fichet: Phys. Rev. D81 (2010) 074003; Phys.Rev. D89 (2014) 114004, JHEP 1502 (2015) 165; Phys. Rev. Lett. 116 (2016) no 23, 231801 and Phys. Rev. D93 (2016) no 7, 075031

Conclusion

- Many complementary results concerning exclusive diffraction at the LHC from CMS and TOTEM (CT-PPS) either using the "rapidity gap" technique or the proton tags
- CMS exclusive pion production: disagreement with theoretical expectations probably due to the fact that proton dissociation is not included in models
- ullet Best limits on $\gamma\gamma WW$ anomalous couplings in CMS
- Exclusive di-muon production: First observation of high-mass exclusive dimuon production:. 17 events are found with protons in the CT-PPS acceptance and 12 with $< 2\sigma$ matching, which leads to a significance for observing 12 events for a background of $1.47 \pm 0.06(stat) \pm 0.52(syst)$ of 4.3 σ
- $\gamma\gamma\gamma\gamma$ couplings: Nice prospects for AFP and CT-PPS, highest possible sensitivities to $\gamma\gamma\gamma\gamma$, $\gamma\gamma WW$, $\gamma\gamma ZZ$, $\gamma\gamma\gamma Z$ anomalous couplings due to new resonances, extra-dim. or composite Higgs...(see talks by Jordan/Christophe)

