

09.07.15

3FD

EoS

Baryon Stopping

Acceptance Impact

Summary



# Baryon stopping signal for mixed phase formation in HIC

Yuri B. Ivanov

NRC "Kurchatov Institute" & NRNU "MEPhI"



SQM 2015.

09.07.15

# 3 Fluids: minimal extension of hydro required by heavy-ion dynamics

- Distributions are separated in momentum space
  - $\Rightarrow$  different fluids
- Leading particles carry baryon charge
  - $\Rightarrow$  2 baryon-rich fluids: **projectile-like** and **target-like**

Baryon Stopping

3FD

Acceptance Impact

Summary

At high incident energies ( $E_{lab} \gtrsim 10A \, {\rm GeV}$ )

 Produced particles populate mid-rapidity
⇒ fireball fluid



momentum along beam

• Kurchatov Inst. 1988–1991: 2-fluid hydro with free-streaming radiation of pions, Mishustin, Russkikh, and Satarov

Frankfurt University 1993–2000: 3-fluid hydrodynamics with instant formation of fireball Brachmann, Katscher, Dumitru, Rischke, Maruhn, Stöcker, Greiner, Mishustin, Satarov, et al.

GSI&Kurchatov Inst. 2003–now: 3-fluid hydrodynamics with delayed formation of fireball, Ivanov, Russkikh, Toneev

# **3-Fluid Dynamics**, present version



Total energy-momentum conservation:

 $\partial_{\mu}(T^{\mu\nu}_{\rho}+T^{\mu\nu}_{t}+T^{\mu\nu}_{f})=0$ 



SQM 2015, 09.07.15

#### 3FD

EoS

Baryon Stopping

Acceptance Impact

Summary

### Equation of State

 Hadronic EoS Galitsky&Mishustin (1979)

- 1st-order transition to QGP (2-phase EoS\*)
- crossover EoS\*

\*[Khvorostukhin, Skokov, Redlich, Toneev, (2006)]



Phase transition  $\Longrightarrow$  EoS softening

# Met-Proton Rapidity distributions



"peak-dip-peak-dip" irregularity at midrapidity Robust with respect to variation of friction and freeze-out energy density NA49 data at 20A, 30A and 80A GeV are still preliminary. Final results are badly needed.

# Physical Origin of the Irregularity

### Baryon stopping

SQM 2015, 09.07.15

### The irregularity is an effect of

• **softest point** of a EoS (a minimum of the sound speed)

spherical fireball

- $\Rightarrow$  essentially 3D expansion
- ⇒ a peak at midrapidity

strongly deformed fireball

- $\Rightarrow$  approximately 1D expansion
- ⇒ a dip at midrapidity

the softer matter is

- $\Rightarrow$  the more deformed fireball
- ⇒ a dip at midrapidity



from E. G. Nikonov, A. A. Shanenko and V. D. Toneev, Heavy Ion Phys. 8, 89 (1998)

#### This irregularity is a signal from hot and dense stage of nuclear collision

If description of the compression stage is insensitive to the EoS (e.g. hadronic cascade for all scenarios), this effect is absent.

D

EoS

#### Baryon Stopping

Acceptance Impact

Summary

# Reduced Curvature at Midrapidity

To quantify this irregularity, net-proton rapidity distributions are fitted by

$$\frac{dN}{dy} = a(\exp\{-(1/w_s)\cosh(y-y_s)\} + \exp\{-(1/w_s)\cosh(y+y_s)\}) ,$$

3FD

EoS

Baryon Stopping

Baryon

stopping SQM 2015, 09.07.15

Acceptance Impact

Summary





#### Wiggle in $C_y$ in the mixed-phase region!



- SQM 2015, 09.07.15
- 3FD
- EoS
- Baryon Stopping
- Acceptance Impact
- Summary

- "full acceptance":  $0 < p_T < 2 \text{ GeV/c and } |y| < 0.7 y_{\text{beam}}$ ,
  - $y_{\text{beam}}$  = beam rapidity in the collider mode
- 0.4 < p<sub>T</sub> < 1 GeV/c and |y| < 0.5, the expected MPD-NICA acceptance
- $1 < p_T < 2$  GeV/c and |y| < 0.5,
  - $p_T$ -range beyond the expected MPD-NICA acceptance
- 0.4 < p<sub>T</sub> < 3 GeV/c and |y| < 0.5, the range of the STAR acceptance

If the baryon-stopping signal of deconfinement onset survives? Y. B. Ivanov and D. Blaschke, arXiv:1504.03992 [nucl-th].

# Impact of Experimental $p_T$ Acceptance



Dark bands:

"full acceptance"

#### Light-grey bands:

 $p_T$  constraints

#### upper border:

 $|y| < 0.7 y_{\text{beam}}$ 

#### lower border:

 $|y| < 0.5 y_{\rm heam}$ 

### The wiggle survives! Wiggle location depends on $p_T$ acceptance Measurements should be taken at the same $p_T$ acceptance for all energies

## **Impact of Experimental** $p_T$ and y Acceptance



Hadronic scenario  $\Rightarrow$  a weak wiggle similar to that in crossover scenario

# **Problems with Narrow** *y* **Acceptance**



Fine structure near midrapidity becomes dominant in a narrow rapidity y window.

Global shape can be inaccessible in a narrow rapidity y window!



- SQM 2015, 09.07.15
- 3FD
- EoS
- Baryon Stopping
- Acceptance Impact
- Summary

- Net-proton rapidity distributions: Irregularity signaling deconfinement onset It is an effect of the softest point of an EoS
- This irregularity is a robust signal of a first-order phase transition **It survives even at a very restrictive acceptance.**
- **To observe this irregularity, measurements should be taken at the same acceptance for all collision energies** because the shape of the net-proton rapidity distribution depends on the experimental  $p_T$ -acceptance.
  - This irregularity (in a weaker form) can be inherent in distributions of other hadrons
    - J. Steinheimer and M. Bleicher, "Extraction of the sound velocity from rapidity spectra: Evidence for QGP formation at FAIR/RHIC-BES energies," Eur. Phys. J. A 48, 100 (2012) [arXiv:1207.2792 [nucl-th]].