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The Future Circular Collider
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From C. Cook, FCC week 2016 (link)



https://indico.cern.ch/event/438866/contributions/1084917/attachments/1258008/1857944/FCC_Civil_Engineering.pptx

Dipole magnets
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Magnet protection

- Magnets need to be protected in case of quench

The key is to lead most of the magnet into the resistive state as fast and
uniform as possible

- The design of the protection system is challenging

High specific energy and inductance — high temperatures and voltages

The simple extrapolation of the present protection technology (Quench
Heaters) could not be enough
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Coupling-Loss Induced Quench (CLIQ) is a new technology for

the protection of superconducting magnets. The core component
is the capacitor bank that generates:

An alternated transport current in the magnet
A variable magnetic field in the coils

High inter-filament and inter-strand coupling losses
Heat on the superconductor

Quick spread of the normal zone after a quench

Schematic courtesy of E. Ravaioli




Quench simulations: TAMPERE

40 ms uniform protection delay: Temperatures

Protection delay includes the detection, etc.
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From T. Salmi, EuroCirCol WP5 Workshop 2016 (link)



https://indico.cern.ch/event/572501/contributions/2317289/attachments/1367967/2073278/ECC_AnnualMTG_Barcelona2016_TS08112016_2.pdf

Quench simulations: TAMPERE

Hotspot temperature simulation assumptions

- 20 ms for quench detection
(10+10ms)
- 20 m/s longit. NZPV, 10 ms turn-to-

turn

. QLASA: Average longit. 18 m/s, turn
to turn: ~4-10 ms

. Remember pre-heating from heaters!

- Atlower current scaled proportionally
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From T. Salmi, EuroCirCol WP5 Workshop 2016 (link)



https://indico.cern.ch/event/572501/contributions/2317289/attachments/1367967/2073278/ECC_AnnualMTG_Barcelona2016_TS08112016_2.pdf

Quench simulations: TAMPERE

Results with heater based protection

Turn heater / guench delays vs. lmag Hotspot temperature and voltages vs. lmag
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— High current the most critical

From T. Salmi, EuroCirCol WP5 Workshop 2016 (link)


https://indico.cern.ch/event/572501/contributions/2317289/attachments/1367967/2073278/ECC_AnnualMTG_Barcelona2016_TS08112016_2.pdf

Quench simulations: STEAM

CLIQ simulations
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More details in M. Prioli, EuroCirCol WP5 Workshop 2016 (link)



https://indico.cern.ch/event/572501/contributions/2317285/attachments/1367887/2088845/FCC_circuits_and_STEAM_updated.pdf

Quench simulations: STEAM

CLIQ simulations
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More details in M. Prioli, EuroCirCol WP5 Workshop 2016 (link)


https://indico.cern.ch/event/572501/contributions/2317285/attachments/1367887/2088845/FCC_circuits_and_STEAM_updated.pdf

Common strategy for quench simulations

- Many actors and tools involved
. Tampere, CoHDA + Coodi
- CERN, STEAM
-+ LBNL, LEDET
- INFN, QLASA

- Crosscheck and validation of the tools
. Table of features and assumptions
. Crosscheck with uniform protection delay (adiabatic, no iron, no losses)
. Simulations adding incrementally all the tools features

. Validation against measurement in MQXF




STEAM strategy for quench simulations

- Prove that our tool for CLIQ simulations is robust and easy to use,
and receive feedbacks
STEAM release

- In many cases, parametric studies are needed: current sweep,
optimization of CLIQ + QH, sensitivity analysis
Integration in STEAM of faster tools for quench simulations (QLASA, LEDET, ...)

- Hybrid protection scenario of CLIQ + QH has to be simulated
QH model in COMSOL

- Each tool needs to prove its capabilities for extrapolation of results
The consistent physics formulation in STEAM is the key




Circuit protection

- Magnets are powered in a chain

- The circuit design is challenging
«  High specific energy and inductance — high circuit energy and voltages
«  The simple extrapolation of the present LHC design is not feasible
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Circuit protection @ FCC week 2016*

- Definition of the FCC powering sector (PS)

LHC ps1 FCC

PS 1 \

Sector 1
3km HalfArc 1
8km

Description LHCPS FCCPS FCC MiniArc Units

Powering sector (PS) length 3000 4000 3200 [m] _
Number of PS in the accelerator 8 16 4 - 20 PS in total
Filling factor 74% 77% 7% -

Number of dipole magnets per PS 154 215 172 -

Inductance per PS 15 272 218 [H]

Stored energy per PS 1 10 8 [G]]

* M. Prioli, Concepts for magnet circuit powering and protection (Link)



https://indico.cern.ch/event/438866/contributions/1084907/attachments/1256735/1855550/Concepts_for_magnet_circuit_powering_and_protection.pdf

Circuit protection @ FCC week 2016*
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* M. Prioli, Concepts for magnet circuit powering and protection (Link)



https://indico.cern.ch/event/438866/contributions/1084907/attachments/1256735/1855550/Concepts_for_magnet_circuit_powering_and_protection.pdf

Circuits layouts E for Cos-theta

N. of circuits per PS 1 2 3 4 6 8
N. of circuits entire FCC 20 40 60 80 120 160
Magnets per circuit 215 108 72 54 36 27
Inductance per circuit [H] 122 61 41 30 20 15
Stored energy per circuit [GJ]

(<1.6) (>3) 8.1 4.1 2.7 2.0 1.4 1.0
Ramp time [min] 20 20 20 20 20 20
Ve [V] (<500) (>1000) 1139 570 380 285 190 142
Vepa max [KV] 1.0 1.0 1.0 1.0 1.0 1.0
Viepa max fautt [KV] 3.3 2.6 2.4 2.3 2.2 2.2
T.ir. [S] (<150) (>250) 684 342 228 171 114 85
MIITS [A2s]*10° (<10) (>20) 43 22 14 10 7 5
A, e [MM?], AT=300K 550 390 320 270 22y 190

More details in M. Prioli, EuroCirCol WP5 Workshop 2016 (link)



https://indico.cern.ch/event/572501/contributions/2317285/attachments/1367887/2088845/FCC_circuits_and_STEAM_updated.pdf

Outlook for circuit and quench simulations

P (})

Example: chain of 36 magnets \_ cLiQ y,

- To understand if this proposal is feasible, circuit simulations are needed
Quenching magnet
CLIQ protection system
Lumped element model of the other magnets in the chain
Other components (e.g. Power Converter (PC), nonlinear switches)
... Quench protection system, controller of Power Converter

- CLIQ introduces a coupling between circuit and quench simulations

More details in M. Prioli, EuroCirCol WP5 Workshop 2016 (link)



https://indico.cern.ch/event/572501/contributions/2317285/attachments/1367887/2088845/FCC_circuits_and_STEAM_updated.pdf

STEAM strategy for circuit simulations

- Thanks to field-circuit coupling, STEAM can provide the first
consistent tool for circuit and quench simulations
STEAM release

- CLIQ effect on the circuit
Create and couple the PSpice netlist of the full FCC circuit

- Voltage is the most severe limiting factor in the circuit design
Test new ideas for magnet powering as coil subdivisions, internal diodes, ...

- For the circuit, lumped elements magnet models are needed
Possibly obtained from FEM?




