Optimised Schwarz Methods for Field/Circuit Coupling

Idoia Cortes Garcia, Herbert De Gersem and Sebastian Schöps

Institut für Theorie Elektromagnetischer Felder and Computational Engineering, TU Darmstadt

- 1 [Optimised Schwarz](#page-2-0)
- 2 [Field/Circuit Convergence Optimisation](#page-8-0)
- 3 [Future work](#page-16-0)

1 [Optimised Schwarz](#page-2-0)

- 2 [Field/Circuit Convergence Optimisation](#page-8-0)
- [Future work](#page-16-0)

Introduction

Domain Decomposition

Methods that take a Boundary Value Problem

and split the domain Ω into *n* subdomains to solve there smaller subproblems. In order to exchange information between them, some transmission conditions have to be defined at the boundaries.

- Subdomains can overlap.
- Typically solved iteratively.

Example

For the case $n = 2$ and domain Ω , a subdivision into two overlapping domains $\Omega_1 \cup \Omega_2 = \Omega$ can be made.

Example

For the case $n = 2$ and domain Ω , a subdivision into two overlapping domains $\Omega_1 \cup \Omega_2 = \Omega$ can be made.

■ With the systems

$$
\begin{cases}\nT(x_1^k) = f_1 & \text{in } \Omega_1, \\
x_1^k = x_0 & \text{on } \partial\Omega_1 \setminus \Gamma_1, \\
x_1^k = x_2^{k-1} & \text{on } \Gamma_1\n\end{cases}
$$

Example

For the case $n = 2$ and domain Ω , a subdivision into two overlapping domains $\Omega_1 \cup \Omega_2 = \Omega$ can be made.

■ With the systems

$$
\begin{cases}\nT(x_1^k) = f_1 & \text{in } \Omega_1, \\
x_1^k = x_0 & \text{on } \partial\Omega_1 \setminus \Gamma_1, \text{ and } \\
x_1^k = x_2^{k-1} & \text{on } \Gamma_1\n\end{cases}\n\begin{cases}\nT(x_2^k) = f_1 & \text{in } \Omega_2, \\
x_2^k = x_0 & \text{on } \partial\Omega_2 \setminus \Gamma_2, \\
x_2^k = x_1^{k-1} & \text{on } \Gamma_2.\n\end{cases}
$$

Transmission conditions

- Study of different transmission conditions.
- Dirichlet T.C.

$$
x_1^k = x_2^{k-1} \qquad \qquad x_2^k = x_1^{k-1}
$$

Dirichlet-Neuman T.C.

$$
x_1^k = x_2^{k-1} \qquad \qquad \frac{\partial x_2^k}{\partial n} = \frac{\partial x_1^{k-1}}{\partial n}
$$

Robin-Robin T.C.

$$
\frac{\partial x_i^k}{\partial n} + \alpha x_i^k = \frac{\partial x_j^{k-1}}{\partial n} + \alpha x_j^{k-1}, \text{ with } i, j = \{1, 2\} \text{ and } i \neq j.
$$

Optimised Schwarz

Optimised Schwarz Methods study the optimal tranmission conditions for a certain problem.

[Optimised Schwarz](#page-2-0)

- 2 [Field/Circuit Convergence Optimisation](#page-8-0)
- [Future work](#page-16-0)

Waveform Relaxation Scheme

In frequency domain the general field/circuit coupling for a Jacobi-like scheme is

Circuit A*j*ω**x**^{*k*+1} + **Bx**^{*k*+1} + **Pi**^{*k*+1} = $\hat{\bf{f}}(j\omega)$ $$ With transmission condition **Magnetoquasistatic Field M***j*ω**u**^{*k*+1} + **Ku**^{*k*+1} = **Xi**^{*k*+1} **X**^T $j\omega$ **u**^{$k+1$} = **v**₂^{$k+1$} With transmission condition

$$
\mathbf{i}_1^{k+1} = \mathbf{i}_2^k
$$

$$
\mathbf{v}_2^{k+1} = \mathbf{v}_1^k.
$$

Transmission conditions

- \blacksquare The scheme shows the source-coupling, which, from a Schwarz-type methods point of view, has Dirichlet transmission conditions.
- **The first coupling equation** $i_1^{k+1} = i_2^k$ **can be changed to the more general** expression

$$
\alpha \mathbf{v}_1^{k+1} = \mathbf{i}_1^{k+1} - \mathbf{i}_2^k + \alpha \mathbf{v}_2^k.
$$

Compute contraction factor $\rho(\alpha)$ such that

$$
||\mathbf{v}_{1}^{k+1}-\mathbf{v}_{1}^{k-1}||=|\rho(\alpha)||\mathbf{v}_{1}^{k-1}-\mathbf{v}_{1}^{k-2}||.
$$

This gives

$$
\rho(\alpha) = \left(\mathbf{I} + \mathbf{x}_{\mathsf{P}}\alpha\right)^{-1} \left(-\mathbf{x}_{\mathsf{P}}(\mathbf{Z}(\omega))^{-1} - \alpha\right),
$$

 $\mathbf{x}_P = \mathbf{P}^\top (\mathbf{A}j\omega + \mathbf{B})^{-1}\mathbf{P}, \qquad \mathbf{Z}(\omega) = j\omega \mathbf{X}^\top (\mathbf{M}j\omega + \mathbf{K})^{-1}\mathbf{X}.$

Optimised Schwarz

■ Contraction factor

$$
\rho(\alpha) = (\mathbf{I} + \mathbf{x}_{P}\alpha)^{-1} \left(-\mathbf{x}_{P}(\mathbf{Z}(\omega)^{-1} - \alpha) \right).
$$

- Iteration converges if $|\rho(\alpha)| < 1$. It can be sped up, if the contraction factor is decreased.
- Optimal convergence is obtained for $|\rho(\alpha)| = 0$, which is the case for

$$
\alpha = \frac{1}{j\omega} \left(\mathbf{X}^{\top} (\mathbf{M} j\omega + \mathbf{K})^{-1} \mathbf{X} \right)^{-1},
$$

which is the admittance of the MQS system, as

$$
\mathbf{V}_2^{k+1} = j\omega \mathbf{X}^\top (\mathbf{M} j\omega + \mathbf{K})^{-1} \mathbf{X} \mathbf{i}_2^{k+1}.
$$

Inductance approximation

The aim is to approximate

$$
\mathbf{L}(\omega) = \mathbf{X}^{\top} (\mathbf{M} j\omega + \mathbf{K})^{-1} \mathbf{X}.
$$

the best possible way.

Inductance approximation

The aim is to approximate

$$
\mathbf{L}(\omega) = \mathbf{X}^\top (\mathbf{M} j\omega + \mathbf{K})^{-1} \mathbf{X}.
$$

the best possible way.

Neumann Series

$$
(\mathbf{I}-\mathbf{T})^{-1}=\sum_{i=0}^{\infty}\mathbf{T}^{i},
$$

with **T** being an operator on a normed space and ||**T**|| < 1.

Proposition

The inductance $\mathbf{L}(\omega) = \mathbf{X}^{\top}(\mathbf{M}j\omega + \mathbf{K})^{-1}\mathbf{X}$ *, for a non-singular* **K***, can be approximated by the Neumann Series*

$$
\mathbf{L}(\omega) = \mathbf{X}^{\top} \mathbf{K}^{-1} \sum_{i=0}^{\infty} (-j\omega \mathbf{M} \mathbf{K}^{-1})^i \mathbf{X},
$$

if ||*j*ω**MK**−¹ ||² < 1*.*

For FIT (Finite Integration Technique), we have proved that the convergence condition is fulfilled for frequency

$$
f<\frac{\pi}{8k_1^4C_1\sigma_{\max}\mu_{\max}},
$$

with constants $h_{\text{max}} = k_1 h_{\text{min}}$ and $h_{\text{min}} = \frac{C_1}{N+1}$.

Neumann Series approximation

The first term of the Neumann Series is

$$
\bm{L} = \bm{X}^\top \bm{K}^{-1} \bm{X}.
$$

The transmission condition with $\alpha = \frac{1}{j\omega} \mathsf{L}^{-1}$ is

Frequency Domain

Time Domain

$$
\frac{1}{j\omega}\mathbf{v}_{1}^{k+1} = \mathbf{X}^{\top}\mathbf{K}^{-1}\mathbf{X}i_{1}^{k+1} - \mathbf{X}^{\top}\mathbf{K}^{-1}\mathbf{X}i_{2}^{k} + \frac{1}{j\omega}\mathbf{v}_{2}^{k}.
$$
 $\phi_{1}^{k+1} = \mathbf{X}^{\top}\mathbf{K}^{-1}\mathbf{X}i_{1}^{k+1} - \mathbf{X}^{\top}\mathbf{K}^{-1}\mathbf{X}i_{2}^{k} + \phi_{2}^{k},$

with φ*ⁱ* being the mag. flux at system *i*.

The parameter coupling equation from (Schöps 2011¹) is

$$
\phi^k_{\mathsf{L}} = \mathbf{X}^\top \mathbf{K}^{-1} \mathbf{X} \mathbf{i}^k_{\mathsf{L}} - \mathbf{X}^\top \mathbf{K}^{-1} \mathbf{X} \mathbf{i}^k_{\mathsf{M}} + \phi^k_{\mathsf{M}}.
$$

¹Multiscale Modeling and Multirate Time-Integration of Field/Circuit Coupled Problems.

1 [Optimised Schwarz](#page-2-0)

- 2 [Field/Circuit Convergence Optimisation](#page-8-0)
- 3 [Future work](#page-16-0)

Taylor Expansion

$$
\mathbf{L}(\omega,\omega_0) = \sum_{k=0}^{\infty} (-j)^k \mathbf{X}^\top (\mathbf{M} j \omega_0 + \mathbf{K})^{-1} (\mathbf{M}(\mathbf{M} j \omega_0 + \mathbf{K})^{-1})^k \mathbf{X} (\omega - \omega_0)^k
$$

For $\omega_0 = 0$ the Neumann Series is obtained.

Idea

For convergence of the series with larger frequencies, expand around $\omega_0 \neq 0$. **Question**

What is $j\omega_0$ in time domain?

Source coupling vs Parameter coupling

Ideas

■ Show that the contraction factor

$$
\rho(\alpha) = \left(\mathbf{I} + \mathbf{X}_{\mathsf{P}}\alpha\right)^{-1} \left(-\mathbf{X}_{\mathsf{P}}(\mathbf{Z}(\omega)^{-1} - \alpha)\right)
$$

is smaller for the parameter coupling than for the source coupling. That is

$$
||\rho(0)|| = |(-\mathbf{x}_{P} \mathbf{Z}(\omega)^{-1})|
$$

\n
$$
> \left| \left(\mathbf{I} + \mathbf{x}_{P} \frac{1}{j\omega} (\mathbf{X}^{\top} \mathbf{K}^{-1} \mathbf{X})^{-1} \right)^{-1} \left(-\mathbf{x}_{P} \left(\mathbf{Z}(\omega)^{-1} - \frac{1}{j\omega} (\mathbf{X}^{\top} \mathbf{K}^{-1} \mathbf{X})^{-1} \right) \right) \right|
$$

\n
$$
= \rho \left(\frac{1}{j\omega} (\mathbf{X}^{\top} \mathbf{K}^{-1} \mathbf{X})^{-1} \right)
$$

■ Show that Re($\mathsf{L}(\omega) = \mathsf{X}^\top (\mathsf{M}j\omega + \mathsf{K})^{-1}\mathsf{X}) \approx \mathsf{X}^\top \mathsf{K}^{-1}\mathsf{X} = \mathsf{L}$

Discussion...