Feynman-Diagramme als "Methode" in der Q-Phase:

inhaltliche Kontexte:

- Bremsstrahlung:
 - \triangleright Nur Darstellung: langsames Elektron + Photon (x t)
 - ➤ didakt. Reduktion: ohne WW mit ruhendem Atom (Elektron)
- Rutherford:
 - ➤ Darstellung (mit Blackbox: He-Kern + Au-Kern → He-Kern + Au-Kern
- Paar-Bildung:
 - ightharpoonup Photon \rightarrow Elektron + Positron
 - ➤ Auflösung der Blackbox:
 - Fundamentale Vertices
 - Virtuelle Teilchen
 - "Umklappen" (Anti-Teilchen)
- Compton-Streuung (S.56 im Reader):
 - ➤ Energiereiches Photon + ruhendes Elektron → Photon + bewegtes Elektron
 - ➤ Anwendung des Gelernten von der Paarbildung
 - "Basteln" des Feynman-Diagramms (evtl. verschiedene Lösungen => Diskussion)
- Beta-Zerfall:
 - \triangleright Neutron \rightarrow Proton + Elektron + Antineutrino
 - neu Ladungserhaltung:
 - Botenteilchen mit elektrischer Ladung notwendig
 - Teilchen mit schwacher Ladung notwendig
 - Sicherung anhand des Beta+-Zerfalls, Elektroneneinfang

- Starke Kraft:
 - > Zusammenhalt der Quarks / Nukleonen führt zu Gluonen
 - Einführung der Botenteilchen Gluon
 - Ggfs. Erweiterung des Beta-Zerfalls