WP15: Upgrade of test beam infrastructure

Task 15.3 Improvements of the DESY test beam infrastructure

BTTB Workshop 2017

Dimitra Tsionou

WP15.3 tasks

- WP15.3.1: Silicon strip telescope for 1T magnet in the DESY test beam line
 - Milestone May 2017 (M24): Hardware assembled
 - Deliverable May 2018 (M36): Installed & Commissioned
- WP15.3.2: Environmental parameter monitoring system for the DESY test beam areas
 - Milestone November 2016 (M18): Hardware installed → 24/10/2016
 - Deliverable November 2017 (M36): Commissioned

T24/1 area

DESY test beam infrastructure T24/1 (1-6 GeV e⁻)

1T large bore magnet including cosmic trigger scintillator setup, mounted on a lifting

stage that can move in 3 axes

- > This infrastructure has been used by different collaborations, among which
 - Belle II
 - ATLAS
 - ILD vertex detector
 - LCTPC (TPC prototype for ILD)

- Need to provide reference tracks over a large area → Silicon telescope to be included in this infrastructure
- Large area telescope ideal for larger setups (TPC, Calorimeters,..)

Silicon Sensors

- Different options for hardware investigated
 - Main requirement: spatial resolution better than 10µm
- Decision on using the SiD strip sensors
- Large area sensors (~10x10 cm²)
- > Expected spatial resolution 7-8µm

- Sensors will be read out by 2 KPiX chips that will be bump bonded on the sensor
- > 20 sensors will be delivered by Hamamatsu to DESY in early Summer (ordered in November)
- > Plan to built a standalone telescope as well

KPiX Performance

- > Full DAQ system setup at DESY
- Calibration tests have been performed wit bare KPiX and with ECal silicon sensor with bump bonded KPiX
- > Further tests to test the performance and behaviour of KPiX
- Design of mechanical support ready. To be produced

KPiX Integration

- KPiX performs power cycling (developed for an ILC environment)
- DESYII also has a specific cycle and beam is only available for part of that
 - 80ms cycle with an ~5ms "spill" (for 5GeV e-)

- Synchronisation scheme between KPiX and DESY cycle using a TLU established
- > New TLU needed → Connection with WP5
- > Flexible method to accommodate different DUTs

Synchronisation between KPiX and DESY cycle

- > TLU triggers and KPiX events contain timing information
- > For synchronisation between the different systems, certain modifications are required on the TLU side. Communicated to WP5

WP15.3.2

Environmental parameter monitoring system for the DESY test beams areas

ie slow control for TB21, 22, 24, 24/1

Dimitra Tsionou | BTTB 2017 | 26-Jan-17 | Page 8

Slow control

- Goal of common slow control system
- General considerations
 - Up to 100 channels
 - Read out speed: >0.1 Hz
 - Rack-based
- ➤ Commercial Ahlborn system → System bought and is being assembled and installed at DESY

- Available sensors
 - Common sensors: temperature, humidity, dew point, air pressure
 - Area-specific sensors
 - User-configurable: flow, CO₂, ...
- Readout: Win OS. Data can be exported to any SQL database (ODBC), ASCII file, Excel and other formats
- Will be integrated to EUDAQ and TINE

Status and Plans

WP15.3.1

- > Silicon sensors will be delivered in early Summer
- Synchronisation scheme between KPiX+DESY(+DUT) established
 - New TLU required to test it → Aiming for DAQ dedicated test beam in May
- Design of mechanical support for telescope to begin soon (next month)
- Integration of KPiX DAQ to EUDAQ (to start soon)
- Manpower: New AIDA postdoc (Spring), Uwe, Dimitra

WP15.3.2

- Common slow control system with permanent and user sensors
- Hardware has been bought and is being installed at DESY (MS33 met)

BackUp

Silicon Telescope for T24/1

> Build a Silicon telescope to provide reference tracks (entry and exit hits)

- The Silicon tracker should be versatile and simple to be used as a telescope by different groups during test beams
- Initial customer for the telescope: TPC collaboration
- Some requirements driven by the TPC as the most challenging scenario

> Challenge: The Silicon system needs to fit in the existing infrastructure (available space is ~3.5 cm)

KPiX cycle

- The KPiX chip will be used to read out the silicon sensors
- KPiX performs power pulsing (developed for ILC environment)

- KPiX can keep up with a ~30Hz cycle during data taking
- > KPiX can work on
 - self-trigger mode → 4 events per channel per cycle, or
 - forced trigger mode → 4 events per cycle
- How to use it efficiently at the DESY testbeam?

