

WP15.4 - TEST BEAM IMPROVEMENTS AT FRASCATI: STATUS

B. Buonomo¹, <u>C. Di Giulio¹</u>, L. Foggetta¹, and P. Valente^{1,2}

¹ INFN Frascati

² INFN ROMA

^{*}AIDA-2020 (Nov. 1st 2016)

The project

Schedule

Status

- All bids for magnets procurement out in a couple of weeks
- This means some delay on the dipoles wrt to the schedule, but should be re-absorbed by the fact that we will provide to the supplier an advanced (practically complete) design:
 - Complete magnetic calculation, including beam quality, pole design, iron quality, saturation...
 - Complete design of coils: electrical, mechanical, thermo-hydraulic
 - Complete design of overall mechanical structure (plates, bolts, alignment) and supports
 - No need of modifying the transfer line inside the LINAC tunnel
- Civil engineering preliminary project approved, already working on the executive one (external company)
- BTF closed to the users from **mid July** (apart 2-3 weeks in Sep.)
- Design slightly modified in order to avoid modifications of the line inside the LINAC tunnel
 - Brings interference with the operation of the collider complex to ≈0
 - Easier installation (and alignment)
 - Also requires 1 quad less (slightly increased the gradient of the other quads)
- Vacuum requirements relaxed: the two BTF lines will be separated by the main LINAC vacuum by a 0.5 mm Be window (already existing); design modified in order to host pumping ports

Updated schedule

Updated schedule

Civil engineering →

New line installation

Beam line components instal...

New lines commissiong

Beam line components installed

D Civil engineering

New line installation

▶ New lines commissiong

Team

Magnets

- B. Buonomo, C. Di Giulio, L. Foggetta: line design, simulation and optimization
- F. lungo, R. Ricci, C. Sanelli, L. Sabbatini, A. Vannozzi: magnetic, electric and thermo-hydraulic di Fisica Nucleare calculation and design
- R. Mascio, L. Pellegrino, G. Sensolini: mechanical design
- B. Bolli, S. Martelli, F. Sardone: preparation, measurements, installation

Cooling and power supply

S. Cantarella, R. Ceccarelli, R. Ricci, U. Rotundo

Vacuum

D. Alesini, S. Bini, L. Foggetta, V. Lollo

Timing

A. Drago, A. Stella

Controls

L. Foggetta, C. Di Giulio, A. Michelotti, A. Stecchi

Radio-protection

A. Esposito, O. Frasciello

Civil Engineering

O. Cerafogli, S. Incremona

Diagnostics

C. Di Giulio, L. Foggetta, E. Spiriti, A. Stella

Magnets

Fast 15° dipole

- Study magnetic field in the gap (and in the return)
 vs. iron material, size, shape
- Current vs. coil conductor section, length, type, n of coils
- Calculate thermo-hydraulic parameters

Fast 15° dipole

GENERAL DATA	
Beam energy (MeV)	1000
Curvature radius (m)	3
Gap (mm)	25
Pole width (mm)	110
Nominal flux density (T)	1,11
Bending angle (deg)	15
N per pole (turns)	36
Ampere-turns/pole	11052
Yoke Width (mm)	277
Yoke Height (mm)	359
Yoke Length (mm)	760
Overall Length (mm)	329
Overall Height (mm)	359
Overall Length (mm)	913
Good Field Region (mm)	±25
Field quality (ΔB/B)	6,4E-03
Integrated Field quality (ΔΙΒ/ΙΒ)	2,3E-03
Total weight (kg)	516
ELECTRICAL INTERFACE	
Conductor dimension	7х7 Ф4
Nominal Current (A)	316
Nominal Resistive Voltage (V)	113
Rtot (Ω)	0,078
Nominal inductance (H)	0,029
Nominal Power (kVA)	35
Maximum Line Cable lenght (m)	20
Proposed cable cross section (mm²)	95
Proposed Output PS Current (A)	330
Proposed Output PS Voltage (V)	130
Proposed Output PS Power (kVA)	42,9
WATER COOLING	
Number of pancakes per pole	3
Number of pancake circuits	6
Number of series circuits	2
ΔT water (°C)	15
Maximum Water flow (m³/s)	0.117
Maximum Water velocity (m/s)	1,55
Maximum ΔP (bar)	2,94

Fast dipole: UNFN Istituto Nazionale di Fisica Nucleare full specs

		IRON				
V (mm3)	PACK FAC	d (kg/dm3)		Weight (kg)		
6,75E+07	0,96		7,85		509	
COILS						
V (mm3)	FILL FAC	d (kg/dm3)		Weight (kg)		
9.46E+06	0,59		8,9		50	

Power supply specs calculated assuming for ramping+stabilization <100 ms

(see modifications to timing)

DC dipoles

GENERAL DATA				
Beam energy (MeV)	921			
Curvature radius (m)	1,8			
Gap (mm)	35			
Pole width at the gap (mm)	190			
Pole width at the yoke (mm)	220			
Nominal flux density (T)	1,7056			
Bending angle (deg)	45,00			
N per pole (turns)	120			
Iron Width (mm)	735			
Overall Width	780			
Overall Height (mm)	503			
Overall Lenght (mm)	1672			
Good Field Region (mm)	±15			
Field quality (ΔB/B)	4,29E-04			
Integrated Field quality (ΔΙΒ/ΙΒ)	3,78E-04			
Total weight (kg)	4006			
ELECTRICAL INTERFACE				
Conductor dimension	9.5х9.5 Ф5.5			
Nominal Current (A)	262			
Nominal Resistive Voltage (V)	72			
Rtot (Ω)	0,276			
Nominal inductance (H)	0,423			
Nominal Voltage on magnet (V) with a 10 s raising time (V)	83			
Nominal Power (kVA)	22			
Maximum Line Cable lenght (m)	20			
Proposed cable cross section (mm²)	95			
Proposed Output PS Current (A)	280			
Proposed Output PS Voltage (V)	95			
Proposed Output PS Power (kVA)	26,6			
WATER COOLING				
Number of pancake per pole	6			
Number of Turn per pancake	(10 H 2 V)			
ΔT water (°C)	15			
Maximum Water flow (m³/s)	3,44E-04			
Maximum Water velocity (m/s)	1,21			
Maximum ΔP (bar)	3,82			

DC dipoles: (NFN) Istituto Nazionale di Fisica Nucleare full specs

		IRON				
V (mm3)	PACK FAC	d (kg/dm3)		Weight (kg)		
3,99E+08	1		7,86		3140	
COILS						
V (mm3)	FILL FAC	d (kg/dm3)		Weight (kg)		
9,5E+07	0,599		8,9		506	

BTF Quadrupole

- $2 \rightarrow 3$ pulsed magnets
- 50 Hz rep. rate : 20 ms between LINAC pulses
- 1 second divided into two 500 ms sequences

- $2 \rightarrow 3$ pulsed magnets
- 50 Hz rep. rate: 20 ms between LINAC pulses
- 1 second divided into two 500 ms sequences
- 1 pulse driven to the spectrometer line for energy measurement

- $2 \rightarrow 3$ pulsed magnets
- 50 Hz rep. rate: 20 ms between LINAC pulses
- 1 second divided into two 500 ms sequences
- 1 pulse driven to the spectrometer line for energy measurement (**DHPTS01 on**)
- During injections, at least 5 pulses go straight into the damping ring (all off)

- $2 \rightarrow 3$ pulsed magnets
- 50 Hz rep. rate: 20 ms between LINAC pulses
- 1 second divided into two 25+25 pulses sequences
- 1 pulse driven to the spectrometer line for energy measurement (**DHPTS01 on**)
- During injections, at least 5 pulses go straight into the damping ring (all off)
- The remaining 25-1-n pulses (up to 19) are diverted to the BTF line (DHPTB101 on)
 - These are the LINAC pulses that we want to split among the two BTF lines

- $2 \rightarrow 3$ pulsed magnets
- 50 Hz rep. rate: 20 ms between LINAC pulses
- 1 second divided into two 25+25 pulses sequences
- 1 pulse driven to the spectrometer line for energy measurement (**DHPTS01 on**)
- During injections, at least 5 pulses go straight into the damping ring (all off)
- The remaining 25-1-n pulses (up to 19) are diverted to the BTF line (DHPTB101 on)
- Start **ramping** the new **DP01** dipole at the beginning of the sequence
 - Gives at least 5×20=**100 ms** for stabilizing

- $2 \rightarrow 3$ pulsed magnets
- 50 Hz rep. rate: 20 ms between LINAC pulses
- 1 second divided into two 25+25 pulses sequences
- 1 pulse driven to the spectrometer line for energy measurement (**DHPTS01 on**)
- During injections, at least 5 pulses go straight into the damping ring (all off)
- The remaining 25-1-n pulses (up to 19) are diverted to the BTF line (DHPTB101 on)
- Start ramping the new **DP01** dipole at the beginning of the sequence; stabilizes in 100 ms;
- All pulses available for BTF (DHPTB101 on) will be driven to the BTF-2 line

MEN

- $2 \rightarrow 3$ pulsed magnets
- 50 Hz rep. rate : 20 ms between LINAC pulses
- 1 second divided into two 25+25 pulses sequences
- 1 pulse driven to the spectrometer line for energy measurement (DHPTS01 on)
- During injections, at least 5 pulses go straight into the damping ring (all off)
- The remaining 25-1-n pulses (up to 19) are diverted to the BTF line (DHPTB101 on)
- Start ramping the new DP01 dipole at the beginning of the sequence; stabilizes in 100 ms;
- All pulses available for BTF (DHPTB101 on) will be driven to the BTF-2 line
- In a similar way, start ramping down DP01 at the beginning of a (semi-)sequence; off in <100 ms

- $2 \rightarrow 3$ pulsed magnets
- 50 Hz rep. rate : 20 ms between LINAC pulses
- 1 second divided into two 25+25 pulses sequences
- 1 pulse driven to the spectrometer line for energy measurement (DHPTS01 on)
- During injections, at least 5 pulses go straight into the damping ring (all off)
- The remaining 25-1-n pulses (up to 19) are diverted to the BTF line (DHPTB101 on)
- Start ramping the new DP01 dipole at the beginning of the sequence; stabilizes in 100 ms;
- All pulses available for BTF (DHPTB101 on) will be driven to the BTF-2 line
- Start ramping down **DP01** at the beginning of a (semi-)sequence; **off** in <100 ms
- All pulses available for BTF (DHPTB101 on) straight to the BTF-1 line

- $2 \rightarrow 3$ pulsed magnets
- 50 Hz rep. rate : 20 ms between LINAC pulses
- 1 second divided into two 25+25 pulses sequences
- 1 pulse driven to the spectrometer line for energy measurement (DHPTS01 on)
- During injections, at least 5 pulses go straight into the damping ring (all off)
- The remaining 25-1-n pulses (up to 19) are diverted to the BTF line (DHPTB101 on)
- Start ramping the new DP01 dipole at the beginning of the sequence; stabilizes in 100 ms;
- All pulses available for BTF (DHPTB101 on) will be driven to the BTF-2 line
- Start ramping down **DP01** at the beginning of a (semi-)sequence; **off** in <100 ms
- All pulses available for BTF (DHPTB101 on) straight to the BTF-1 line
- No overall duty-cycle loss when running in parallel with the DAΦNE collider
- When running without DAΦNE, i.e. in BTF dedicated mode: loss = (5 pulses)/(49*n), if switching line every n seconds, i.e. 10% or lower

Timing diagram (BTF parasitic) (NFN di Fisica)

Timing diagram (switch to BTF-2) (NFN di Fisica Nucleare

Timing diagram (switch to BTF-1)

