# **IRRAD Facility Infrastructure Upgrade**

<u>Blerina Gkotse</u>, Maurice Glaser, Georgi Gorine, Isidre Mateu, Emanuele Matli, Giuseppe Pezzullo, Federico Ravotti CERN EP-DT, BE-OP







#### **Outline**

- CERN Milestones & Deliverables
- CERN Proton irradiation Facility (IRRAD)
- Samples manager
  - > Samples manager progress
  - > Samples manager planning
  - ➤ Mini-BPM & single-pad BPM detectors
  - Beam Profile Monitors (BPM)
  - Control systems
  - Samples Manager Dataflow
- Irradiation facilities database
- Conclusion





#### **CERN Milestones & Deliverables**

- CERN Proton Facility (IRRAD)
  - Online database on EU irradiation facilities of interest for HEP
  - Improve IRRAD infrastr. / user friendliness
    - equip area to store/handle activated materials
    - □ sample and user management software system
    - upgrade contactless fluence monitoring-Vilnius University
    - high-granularity & fast Beam Profile Monitor
    - **□** test sample holders for extremely-high fluence
    - thermal box to -40°C for CERN & Birmingham
      -University of Sheffield
- CERN Gamma Irradiation Facility (GIF++)
  - Extension / upgrade of GIF<sup>++</sup> Gas system
  - New online dose-rate monitor (INRNE)
  - Extension of the cosmic ray tracker on the side walls (INFN)
  - □ Demonstrator for an augmented reality event display (INFN)







#### **Outline**

- CERN Milestones & Deliverables
- CERN Proton irradiation Facility (IRRAD)
- Samples manager
  - > Samples manager progress
  - > Samples manager planning
  - ➤ Mini-BPM & single-pad BPM detectors
  - Beam Profile Monitors (BPM)
  - Control systems
  - Samples Manager Dataflow
- Irradiation facilities database
- Conclusion







## **CERN Proton irradiation Facility (IRRAD)**

- > Testing components of the HEP experiments > Fluence of 1×10<sup>16</sup> p/cm<sup>2</sup> in 14 days
- ▶ Beam of 24 GeV/c and size of 12×12 mm²
  ▶ Scanning also in dimensions of 10×10cm²
- ➤ Spills of 400msec every ~10sec
  ➤ Low temperature irradiation (-25°C)



## **Proton IRRADiation Facility in 2016**

- > Radiation damage studies
- Test of prototypes & final assemblies before installation
- > Test and calibration of components



FE Electronics (w. or wt. detectors), 36%

|                                          |                                                                   | TE Electronics (w. or wt. detectors), 50%                                                                                                |
|------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Registered Experiments (web)             | 52                                                                | 49 executed (94%)                                                                                                                        |
| Number of users / user teams             | 28                                                                | ~70% LHC experiments                                                                                                                     |
| Number of samples / irradiated objects   | 416                                                               | 246 "SET" numbers                                                                                                                        |
| Samples size (MIN/MAX)                   | 2mm × 2mm                                                         | 250cm × 13cm × 4cm                                                                                                                       |
| MAX target proton fluence per experiment | 1×10 <sup>17</sup> p/cm <sup>2</sup><br>(5×5mm <sup>2</sup> FWHM) | ~27MGy in silicon                                                                                                                        |
| Delivered proton (typical MIN/MAX)       | ~2×10 <sup>11</sup> p/cm <sup>2</sup><br>(1 spill)                | ~4.2×10 <sup>16</sup> p/cm <sup>2</sup> (5×5mm <sup>2</sup> FWHM)<br>~1.6×10 <sup>16</sup> p/cm <sup>2</sup> (20×20mm <sup>2</sup> FWHM) |
| Irradiation time (typical MIN/MAX)       | 400 ms                                                            | ~60 days<br>~76 days                                                                                                                     |





#### **Outline**

- CERN Milestones & Deliverables
- CERN Proton irradiation Facility (IRRAD)
- **Samples manager** 
  - > Samples manager progress
  - > Samples manager planning
  - ➤ Mini-BPM & single-pad BPM detectors
  - Beam Profile Monitors (BPM)
  - Control systems
  - Samples Manager Dataflow
- Irradiation facilities database
- Conclusion





## **Samples Manager**

Old system

T Sample Manager Sampel Manager - Samples Print labels Samples Dosimeters Registration Search/Modify Print label Irradiation results Print label of Sample Set Search: Set- ---- Go Lookup: Set-1762-P3-2012 ▼ Sample Set 11/2/2012 3:29:46 P Set-1762-P3-2012 Labels Storage: (1) Main label Irradiation label Storage: (2) Description label Set-1762-P3-2012 SAMPLE Set-1762-P3-2012 SAMPLE SET 1762 FACILITY: IRRAD7 REQ FLU: 8.00E+015 part/cm<sup>2</sup> Start: Not yet in DB P3-2012 COMMENT: Energe royptose: (160000) Stop: Not yet in DB 0.0E+000 uSvh @ 10cm REQ STORAGE TEMP: Low < 20# C STORE: None STORAGE BOX: Print Print Storage of sample set Description and comments Description Frame with NTC's and FET's Store specifications Emergency phone: (165599) No storage. No storage specified. Sample not stored yet Irradiation status

Completed

Irradiation Facility

IRRAD7

IrradFacility specifications Comment

Small poes, Std = 5 x 5 cm2, Max = 10 x 10 cm2 Particle

Proton [24Gev/c, 1-3 E13 p/cm2/h] New system







## **Samples Manager Progress**

- ✓ Current state of the art
  - Irradiation facilities technology research
  - Contacting facility owners
- ✓ Specifications defined
  - ✓ User communities
  - ✓ Features
  - ✓ Use cases

(cds.cern.ch/record/2159521/files/AIDA-2020-MS16.pdf)

✓ First design approach



Samples manager use case model



Samples irradiation procedure sequence diagram









# **Samples Manager Planning**

- ☐ Completion of the design
- ☐ System development
- ☐ System validation







## **Samples Manager**







### **BPM Detectors and DAQ Unit**

#### **Fixed BPM**

For the beam alignment

#### Mini and single-pad BPMs

IRRAD tables alignment purpose and "in-beam"







Transversal beam profile



BPM DAQ unit 25-35m away from fixed-BPM device.





## **Beam Profile Monitors (BPMs)**



26/01/2017





## **Upgrade: New 3D Fitting Tool Validation**

- Better accuracy required by:
  - CERN Control Center (CCC)
  - o IRRAD team
  - IRRAD users
- Developed within AIDA-2020, D15.7

- All BPM channel values included
- Initial values for the algorithm: the maximum value and its XY position
- SciPy function for least square minimization
- Validated over hundreds of spills against other fitting methods



#### **Reconstructed Beam Profile**







# **Shuttle-IRRAD1 Description**

- System to place samples in beam without accessing the area.
- No need to stop the beam
- Manual control
- Software control
- Dose rate monitoring
- Safe handling of samples as priority











#### **Shuttle-IRRAD1 Control Interfaces**

- Remote control of the shuttle via Ethernet
- > Two interfaces:
  - Administrators-full control
  - Users-simplified version
- Y- Axis positions: Reference, Load, Park and Beam
- X-Axis positions: Reference, Park, Pre-Beam and Beam
- Counting beam intensity while shuttle in beam
- Software interlock when samples radioactivity is too high











## **DAQ** and Shuttle Monitoring

- ✓ Calibration factors
- ✓ Shuttle positions monitoring (both axis)
- Dose rate monitoring (samples radioactivity)
- ✓ Calculation of the proper timing to place the samples in beam (for short time irradiations)







#### **IRRAD Tables Control**

- XY and theta axis movement
- Positions definition
- Speed definition
- Motors calibration
- Storage of calibration and system configuration parameters









## **Samples Manager Dataflow**







26/01/2017 AIDA-2020 WP15

19

#### **Outline**

- CERN Milestones & Deliverables
- CERN Proton irradiation Facility (IRRAD)
- Samples manager
  - > Samples manager progress
  - > Samples manager planning
  - ➤ Mini-BPM & single-pad BPM detectors
  - Beam Profile Monitors (BPM)
  - Control systems
  - Samples Manager Dataflow
- Irradiation facilities database
- Conclusion





#### **Irradiation Facilities Database**

- Unified entry point for irradiation facilities at CERN and worldwide
- Essential (but exhaustive) collection of information
- 165 entries so far
- Validation of the data in progress



irradiation-facilities.web.cern.ch







#### **Irradiation Facilities Database Features**

- > Possibility to create and edit new facilities by the facility owners
- > Search filters by country, source or radiation field
- Irradiation facilities worldwide map
- Auto-maintenance (regular reminders)
- Open-access data but secured with the CERN authentication system (SSO)







26/01/2017 AIDA-2020 WP15

22

#### **Conclusion**

- Samples manager is on track
- The development of the core software has started and expected to be finished by M24
- Irradiation facilities database completed ahead of schedule and data are being validated
- Once D15.6 completed, the CERN team will further progress on D15.7

Contact: Irradiation.Facilities@cern.ch





23

## **THANK YOU!**

