Transport system for large objects at Ljubljana JSI TRIGA reactor

Vladimir Cindro et al. Jožef Stefan Institute, Ljubljana, Slovenia

TRIGA MarkII Reactor

- started operation 1966, built by General Electrics
- reconstructed and equipped for pulse operation in 1991
- infrastructure center established and financed by the Ministry of Higher Education, Science and technology and managed by Jožef Stefan Institute
- light water pool reactor cooled by natural convection
- power (and flux) variable from 1 W to 250 kW
- in pulse mode power peaks at 1800 MW, energy of pulse 23 MWs

- vertical channels with access directly into the core
- F19 (small) cylindrical containers with 24 mm or 19 mm internal diameter and
 110 mm length
- access to samples with 7 8 m cables possible
- 1 MEV NIEL flux up to 1.54 10¹² ncm⁻² measured with bulk damage current in Si diode
- TID \approx 1 kGy at $10^{14} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$
- "large" channel with quasi elliptical shape ≈ 7.5 cm x 4.5 cm
- no standard containers
- 1 MEV NIEL flux up to 3.6 10¹² ncm⁻²
- Irradiations up to several 10¹⁷ ncm⁻² are possible

- extraction of cold neutron source used in the past for neutron diffractometry
- decontamination and inspection of channel interior
- documentation needed to obtain the authorization for the installation of the irradiation device from TRIGA reactor Safety Committee and Slovenian Nuclear Safety Administration
- authorization granted in August 2016
- channel completed in October 2016

TRIGA reactor Tangential channel fitted with irradiation device

- aluminum liner with inside diameter 14.6 cm
- protection of internal components
- facilitates insertion and withdrawal of samples

- sample support structure made from PE100 material
- support for sample should be custom made!
- allows routing of cables to the sample

- neutron shield made from borated polyethulene
- gamma dose rate at the surface of Pb ≈ mSv/h
- concrete bricks

Neutron fluxes and spectra

- computational analysis with MCNP code (X-5 Monte Carlo Team 2004)
- published in L. Snoj et al. (Applied radiation and Isotopes 70 (2012) 483 488

Tangential channel

- Thermal neutrons < 0.625 eV
- Epithermal neutrons 0.625 eV 0.1 MeV
- Fast netrons > 0.1 MeV

	$\Phi_{th}(10^{12} \text{cm}^{-2} \text{s}^{-1})$	$\Phi_{\rm epi}(10^{12}{\rm cm}^{-2}{\rm s}^{-1})$	$\Phi_{\rm fast}(10^{12}{ m cm}^{-2}{ m s}^{-1})$	$\Phi_{tot}(10^{12} cm^{-2} s^{-1})$
small channel (F19)	3.66	1.86	1.81	7.32
large channel (TIC)	4.46	3.45	3.85	11.7
Tang. Ch.	0.75	0.33	0.23	1.31

Agreement with measurement in small channel within 10 %

calculated neutron fluxes

- measured gamma flux profile
- dose rate several 10 kGy/h (very preliminary!!)

Plans and conclusion

- measurement of 1 MeV NIEL fux in preparation
- new facility will allow irradiation of 12 x 20 cm samples
- 10¹⁵ n cm⁻² (fast) in approx. 1.5 h
- ready to receive samples!