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Local Anomaly Detection Approaches
Nearest Neighbour-based Approaches

Assumption

Normal data instances occur in dense neighbourhoods,
while anomalies occur far from their closest neighbours

Distance-based: Anomaly score is the distance of a data
instance to its kth-nearest neighbour

Density-based: Anomaly score is the relative density of
each data instance compared to its neighbourhood
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Local Anomaly Detection Approaches
Nearest Neighbour-based Approaches

All Nearest Neighbour-based approaches require a
distance or similarity measure between pairs of data
instances

Distance measure is usually required to be:
▶ positive-definite (can’t have negative distances)
▶ symmetric: d(a,b) = d(b,a)
▶ but is not usually required to satisfy the triangle
inequality z ≤ x+ y

A norm is a function that assigns a strictly positive length
or size to each vector in a vector space
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Nearest Neighbours
Euclidean distance

“Ordinary” (straight-line) distance between two points in
Euclidean space
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Nearest Neighbours
Euclidean distance

In 2D Cartesian space:

d(a,b) = d(b,a) =
√

(x1 − x2)2 + (y1 − y2)2

In 3D Euclidean space:

d(a,b) = d(b,a) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

Generalistion to any number of dimensions is the
Euclidean norm or L2 norm:

d(a,b) = ||a − b|| =

√√√√ n∑
i=1

(ai − bi)2
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Nearest Neighbours
Manhattan Distance

L1 norm:

d(a,b) = ||a − b||1 =
n∑

i=1

|ai − bi|
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Nearest Neighbours
Minkowski Distance

Minkowski Distance is a generalisation of Manhattan
distance and Euclidean distance

Lp norm:

d(a,b) = ||a − b||p =

(
n∑

i=1

|ai − bi|p
) 1

p

p = 1 gives Manhattan distance

p = 2 gives Euclidean distance
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Nearest Neighbours
Chebyshev Distance

In the limiting case of p = ∞, we get the Chebyshev
distance

L∞ norm:

d(a,b) = ||a − b||∞ = lim
p→∞

(
n∑

i=1

|ai − bi|p
) 1

p

=
n

max
i=1

|ai − bi|

Chebyshev distance has been used as a distance measure
for high-dimensional data. Fast to compute and accuracy
comparable to L1 or L2 norms.

Distance measures with 0 < p < 1 have also been effective
for high-dimensional data
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Distance-based Approaches
Distance to Nearest Neighbour

Calculate distance of a data instance to its nearest
neighbour

Labelling: Threshold on the distance

Scoring: Anomaly score = distance
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Distance-based Approaches
Distance to Nearest Neighbour

Calculate distance of a data instance to its nearest
neighbour

Labelling: Threshold on the distance

Scoring: Anomaly score = distance

Misses paired outliers
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Distance-based Approaches
Distance to k-Nearest Neighbour
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Distance-based Approaches
Distance to k-Nearest Neighbour

Micro clusters (|C| ≤ k) become outliers
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Distance-based Approaches
Variations of k-NN

“Outliers are further away from the data”

Anomaly score = sum (average) of distances to k-Nearest
Neighbours

More robust with respect to micro-clusters
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Distance-based Approaches
Global Density

Count the number of neighbours in a hypersphere of
radius r.

▶ Fix radius r and use 1
k as the anomaly score

▶ Fix k and use 1
r as the anomaly score

The density of a data instance is:

k
V(hypersphere)

For 2D data:

k
πr2

Michael Davis (CERN) Algorithms for Anomaly Detection 7 March 2017 74 / 112



Introduction Global Anomalies Local Anomalies High-Dimensional Data Other Approaches ,

Overview Nearest Neighbours Distance-based Approaches Density-based Approaches

Distance-based Approaches
Global Density

Count the number of neighbours in a hypersphere of
radius r.

▶ Fix radius r and use 1
k as the anomaly score

▶ Fix k and use 1
r as the anomaly score

The density of a data instance is:

k
V(hypersphere)

Anomaly score is the inverse of the density:

πr2

k
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Distance-based Approaches
Global Density

However: k-NN Cannot handle variations in density
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Density-based Approaches
Relative Density

Global Density: Outlier o1 will be detected, o2 will not.
Relative Density: Anomalies are far from their neighbours,
relative to the density of the local neighbourhood of each
data point
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Density-based Approaches
Reachability Distance
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k = 4

k-distance: Distance to kth

Nearest Neighbour

Reachability Distance (p,o):

max{d(p,o), k-distance(o)}

Local Density:

k
V(hypersphere)
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Density-based Approaches
Local Outlier Factor (LOF)

Choose parameter k

Calculate the local reachability density of all data
instances:

lrdk(p) =
1

average reachability distance of all points o ∈ Nk(p)

The Local Outlier Factor (LOF) of a point p is the ratio:

average local reachability density of all points o ∈ Nk(p)
local reachability density of p
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Density-based Approaches
Local Outlier Factor (LOF)

Choose parameter k

Calculate the local reachability density of all data
instances:

lrdk(p) =
1

average reachability distance of all points o ∈ Nk(p)

The Local Outlier Factor (LOF) of a point p is the ratio:

LOFk(p) =
1

|Nk(p)|
∑

o∈Nk(p)

lrdk(o)
lrdk(p)
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Density-based Approaches
Local Outlier Factors (LOF)

Normal instance: local density of p is similar to its
neighbours
Outlier: local density of p is lower than its neighbours
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Density-based Approaches
Local Outlier Factors (LOF)

Normal instance: LOFk(p) ≤ 1.0

Outlier: LOFk(p) ≫ 1.0
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Density-based Approaches
LOF Variants

Outlier Detection using In-degree Number (ODIN)
▶ ODIN score is the number of k-NNs of p which have p

in their k-NN

Connectivity-based Outlier Factor (COF)
▶ Add the next-closest instance to the NN (rather than

the closest to p)
▶ Continue until we have k instances

SLOM: LOF variant for detecting spatial anomalies in
climate data

LOF variant for categorical data using a similarity measure
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Distance- and Density-based Approaches
Advantages

Unsupervised, data-driven approach

Does not make any assumptions about the generative
process that created the data, or the statistical distribution
of the data

Adapting to other types of data is straightforward: define
an appropriate distance measure
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Distance- and Density-based Approaches
Disadvantages

Risk of misclassification

Performance greatly relies on the distance measure chosen
▶ Euclidian distances perform well…
▶ …but are expensive to compute
▶ “Curse of Dimensionality”

High O(N2) computational complexity to calculate the
neighbourhood
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Distance- and Density-based Approaches
Computational Complexity

High O(N2) computational complexity to calculate the
neighbourhood can be mitigated by:

Indexing: R-trees, R*-trees, X-trees can yield O(n logn)
complexity. But do not scale well in high dimensions.

Partitioning/Clustering: Partion attribute space into a
hypergrid. Linear in data size but exponential in number
of attributes, so not suited to high-dimensional data.

Sampling/Pruning: determine k-NN within small sample of
dataset. Can result in incorrect anomaly scores if sample
size is too small.
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Anomaly Detection in High-dimensional Data

“Curse of Dimensionality”

Distance Concentration Effect

Neighbourhood Selection

Subspace Outlier Detection

Outstanding Problems
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Anomaly Detection in High-dimensional Data

Curse of Dimensionality

The term dimensionality curse is often used as a vague
indication that high dimensionality causes problems in
some situations.
The term was first used by Bellman in 1961 for
combinatorial estimation of multivariate functions…
In the area of the nearest neighbors problem it is used
for indicating that a query processing technique
performs worse as the dimensionality increases.

—Beyer et al. 1999
When is “nearest neighbour” meaningful?
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Curse of Dimensionality

“Curse of Dimensionality” is commonly used as a catch-all for
three separate problems:

Distance Concentration Effect

Irrelevant attributes concealing relevant information

Efficiency issues
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Distance Concentration Effect

Assumption

The ratio of the variance of the length of any point
vector (denoted by ||Xd||) with the length of the mean
point vector (denoted by E[||Xd||]) converges to zero
with increasing data dimensionality.

Consequence

The proportional difference between the farthest-point
distance Dmax and the closest-point distance Dmin (the
relative contrast) vanishes.

—Beyer et al. 1999
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Distance Concentration Effect

If lim
d→∞

var
(

||Xd||
E[||Xd||]

)
= 0, then

Dmax −Dmin

Dmin
→ 0.

Relative contrast between near and far neighbours
diminishes as the dimensionality increases

This is known as the concentration effect of the distance
measure

It reduces the utility of the measure to discriminate
between near and far neighbours
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Distance Concentration Effect
Distance Measures

Covers a broad range of data distributions and distance
measures (generally: all integer Lp norms with p ≥ 1)

Hinnenburg et al. show that L1 and L2 are the only integer
norms useful for higher dimensions

Aggarwal et al. show that fractional Lp norms can be used,
but the result is only valid for uniformly distributed data

Effect can be partially countered by rescaling to unit
dimensions (∀xi, xi ∈ [−1, 1])
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Distance Concentration Effect
Relative Contrast
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k-NN distances for uniformly distributed data and normally
distributed data are very different at low dimensions

They become almost the same at high dimensions
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Distance Concentration Effect
Relative Contrast
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However: for a constructed outlier (xi = 0.9 in all dimensions),
discrimination increases as dimensions increase:
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Distance Concentration Effect
Relative Contrast
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This is because all dimensions add information

Main problem for outlier detection in high-dimensional data is
extra dimensions which do not add information
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Neighbourhood Selection
What determines if the Nearest Neighbourhood is meaningful?

High signal-to-noise ratio: irrelevant attributes mask the
information in relevant attributes

“Self-similarity Blessing”: Latent correlation between the
attributes results in an intrinsic dimensionality which is
considerably lower than the representational
dimensionality

Concentration effect is less severe for clusters of points
generated by the same mechanism
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Neighbourhood Selection
Pairwise Stability

Pairwise stability between clusters holds when:

mean distance between
points of different clusters

≫ mean distance between
points of the same cluster

If clusters are pairwise stable, the NN of any point tends to
belong to the same cluster

NN queries on the order of the cluster size can still be
meaningful, even if differentiation between neighbours
within the same cluster is meaningless
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Neighbourhood Selection
Absolute Distance vs. Distance Rank
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At high dimensions, a small change in radius r leads to big
change in volume of a hypersphere
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Neighbourhood Selection
Absolute Distance vs. Distance Rank
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At high dimensions, a small change in radius r leads to big
change in volume of a hypersphere

Selecting neighbourhood using radius r is unstable

Hard to select correct value for r

Selecting k-NN is more stable as it relies on a distance ranking
rather than absolute distances
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Neighbourhood Selection
Approximate Neighbourhoods
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Anomaly detection in a reduced feature space:
▶ Step 1: Global dimensionality reduction, e.g. by Principal

Component Analysis
▶ Step 2: Outlier detection in the reduced feature space
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Neighbourhood Selection
Approximate Neighbourhoods
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Anomaly detection in a reduced feature space:
▶ Step 1: Global dimensionality reduction, e.g. by Principal

Component Analysis
▶ Step 2: Outlier detection in the reduced feature space

Can be effective in selecting the neighbourhood

However, the subspace is usually insufficient to derive all
outliers

Outlier detection step is likely to fail
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Neighbourhood Selection
Johnson-Lindenstrauss Transform

Johnson-Lindenstrauss Lemma
Proves that when n objects are projected into a
lower-dimensional space of dimensionality O( log n

ϵ2
), the

distances are preserved within a factor of 1 + ϵ

Reduced dimensionality does not depend on the original
dimensionality

Choice of error bound ϵ gives a controlled trade-off
between efficiency and precision

Random projection is independent of the data and cheap
to compute compared to PCA
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Neighbourhood Selection
Projection Indexed Nearest Neighbours (PINN)

High-dimensional variant of LOF

Use random projections to find the approximate
neighbourhood of each point

Calculate LOF scores in the original space

Main Result

Proves that the outlier scores are preserved within the
error bound ϵ of the random projection
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Neighbourhood Selection
Projection Indexed Nearest Neighbours (PINN)
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Angle-based Outlier Detection (ABOD)

Distance measure based on Cosine Distance
Normal data: most other data objects are distributed in all
directions
Outlier: most other data objects are distributed in a few
directions
Lower variance signifies higher outlierness
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Subspace-based Outlier Detection
Data-snooping Bias

Say we choose 3σ as the threshold, then likelihood of an
outlier is 0.9973d.

▶ At d = 10, 97.33% of objects are within 3σ in every
dimension

▶ At d = 100, 76.31% of objects are within 3σ in every
dimension

▶ At d = 1000, 6.696% of objects are within 3σ in every
dimension

At high dimensions, virtually every object is extreme in at
least one dimension

Therefore, feature selection/searching many subspaces
runs the risk of data-snooping bias (a kind of model
overfitting)
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Subspace-based Outlier Detection
OutRank

Grid-based clustering approach

Clusters (as opposed to outliers) are not rare objects and
are recognisable at higher dimensionality

Outlierness based on how often the object is recognised
as part of a cluster

Relies on clusters being well-separated

By finding clusters first, avoids data-snooping bias…

…but grid-based approach leads to combinatorial
explosion of the search space
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Problems of High-dimensional Data

Concentration of Scores: distances of attribute-wise i.i.d.
objects converge to a normal distribution with low
variance

Noise Attributes: irrelevant attributes can mask relevant
attributes

Definition of Reference Sets: Need to know the
neighbours to choose the subspace; need to know the
subspace to find the neighbours
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Problems of High-dimensional Data

Data-snooping Bias: Given enough subspaces, we can
find at least one subspace in which the point is an outlier.

Exponential Search Space: Number of possible subspaces
grows exponentially with number of dimensions

Thresholding: While ranking outlier scores may be valid, it
may be impossible to find a threshold between inliers and
outliers due to low contrast
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Structured Data Ensemble Methods

Anomaly Detection in Structured Data

Regression Models
▶ Where we expect linearity in the data

Time Series Data
▶ Temporal sequence of data points, sometimes with

cyclic patterns
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Structured Data Ensemble Methods

Anomaly Detection in Structured Data

Geographic/Directional Data
▶ Spatial relationship between data points
▶ Spatial Outlier Factor, a variant of LOF based on

spatial neighborhoods

Graph-based Data
▶ Social networks, transport networks, computer

networks, ecosystems, …
▶ Analysis of the adjacency matrix
▶ Frequent subgraph mining
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Structured Data Ensemble Methods

Ensemble methods

Sometimes results can be improved by using more than
one method, and combining the results

Methods must exhibit two properties:
▶ Accuracy
▶ Diversity

How to combine scores in a principled way?
▶ Normalisation
▶ Greedy Ensemble algorithms

Michael Davis (CERN) Algorithms for Anomaly Detection 7 March 2017 109 / 112



Introduction Global Anomalies Local Anomalies High-Dimensional Data Other Approaches ,

Summary

There are many different approaches to anomaly detection
▶ Statistical
▶ Classification- and Clustering-based
▶ Distance- and Density-based
▶ Structured Data

Which algorithm is best will depend on:
▶ Nature of the problem we wish to solve
▶ Availability of labelled data
▶ Data type(s)
▶ Data distribution
▶ Data dimensionality
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Tools for anomaly detection algorithms
ELKI Data Mining Toolkit

https://elki-project.github.io/

Algorithms for clustering and outlier detection
Emphasis on unsupervised methods
Includes data index structures for performance and
scalability (e.g. R*-tree)
Designed to allow easy and fair evaluation and
benchmarking of algorithms
Extensible: written in Java, released under AGPLv3 license
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The End
I Hope It Made Sense
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