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Introduction and Motivation
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Why of interest?

◮ main (hadronic) contribution to the total decay width
BR(η′ → ηππ) = 0.652(11) [PDG 2016]

◮ due to U(1)A anomaly of QCD η′ is not a Goldstone boson:
⇒ ChPT breakdown for processes involving an η′

◮ relatively small phase space, but FSI seem to play an important role
already seen in the study of η → 3π [talk by B. Moussallam on friday]

◮ potentially clean access to constrain ηπ scattering (energy far below
KK̄ inelastic threshold)

◮ measurements of the Dalitz plot available from BES-III and VES
(both η′ → ηπ+π−) and upcoming data from A2 (η′ → ηπ0π0)

◮ η′ → ηπ0π0 expected to show a cusp effect at π+π−-threshold
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Advantages of dispersion relations

◮ based on fundamental properties of analyticity, unitarity and crossing
⇒ model independence

◮ in contrast to effective field theories: dispersive methods describe the
resummation of rescattering effects for considered particles
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Dispersion relation for a single-variable function
complex-valued function f(s): analytic in the entire complex plane apart
from a branch cut on the real axis for s ≥ sth

◮ Cauchy’s theorem:

f(s) =
1

2πi

∮

γ

f(s′)

s′ − s
ds′
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Can be extended to less restrictive high energy behaviour of f(s) by
applying subtractions
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Integral equations for η′ → ηππ
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Kinematics of the η′ → ηππ decay

transition amplitude:

〈πi(p1)π
j(p2)η(p3)|T |η

′(P )〉 = (2π)4δ(4)(P − p1 − p2 − p3) δ
ij A(s, t, u)

Mandelstam variables:

s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p2 + p3)
2

(charged decay channel η′ → ηπ+π− and neutral channel η′ → ηπ0π0

differ only by isospin breaking effects)
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Analytic properties of the η′ → ηππ amplitude

◮ A(s, t, u) has a right-hand branch cut in the complex s-plane, starting
at the ππ-threshold

◮ similar situation in t- and u-planes, branch cuts starting at the
ηπ-threshold

◮ left-hand cuts present due to crossing
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Reconstruction theorem
[Stern et al. 1993, Ananthanarayan et al. 2001, Zdráhal et al. 2008]

◮ A(s, t, u) can be decomposed into single-variable functions that
possess just a right-hand cut

A(s, t, u) = A0(s) +A1(t) +A1(u)

A0 contains ππ-FSI effects (I=0, S-wave)

A1 contains ηπ-FSI effects (I=1, S-wave)

◮ neglect discontinuities of P - and higher partial waves:

ππ P -wave forbidden by C-parity

ηπ P -wave has exotic quantum numbers

D- and higher partial waves neglected due to small phase space
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Unitarity condition

s-channel:

(analogous for t- & u-channel)

discontinuity equations for the single-variable functions:

discA0(s) = 2i θ
(

s− 4M2
π

) [

A0(s) + Â0(s)
]

e−iδ0(s) sin δ0(s)

discA1(t) = 2i θ
(

t− (Mη +Mπ)
2
) [

A1(t) + Â1(t)
]

e−iδ1(t) sin δ1(t)

⇒ inhomogeneous Omnès problem

δ0(s), δ1(t): S-wave ππ and ηπ scattering phase shifts

ÂI : inhomogeneities, angular averages of crossed-channel AI functions
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Omnès representation

dispersive representation for the functions AI in Omnès form:

A0(s) = Ω0(s)

{

α+ βs+
s2

π

∫ ∞

4M2
π

ds′

s′2
Â0(s) sin δ0(s

′)

|Ω0(s′)|(s′ − s)

}

A1(t) = Ω1(t)

{

γt+
t2

π

∫ ∞

(Mη+Mπ)2

dt′

t′2
Â1(s) sin δ1(t

′)

|Ω1(t′)|(t′ − t)

}

Omnès function [Omnès 1958]:

ΩI(s) = exp

{

s

π

∫ ∞

sth

ds′

s

δI(s
′)

(s′ − s)

}

asymptotics: δ0(s) → π, δ1(t) → π and A0(s) = O(s0), A1(t) = O(t0)

⇒ 3 (real) subtraction constants α, β, γ needed

if ÂI = 0 : back to form factor relations [talk by J. Daub]

11



Physical interpretation

◮ Omnès function: iteration of two-particle bubble diagrams

◮ dispersion integral: accounts for crossed-channel interactions

◮ subtraction constants: free parameters in the dispersion relation, not
fixed by unitarity
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ππ-scattering phase shift (S-wave, I = 0)
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ηπ-scattering phase shift (S-wave, I = 1)
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T -matrix (ηπ/KK̄) [Albaladejo, Moussallam 2015]
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Intermediate summary

◮ set of coupled integral equations:

⇒ A0(s), A1(t): DR involving Â0(s), Â1(t)

⇒ Â0(s), Â1(t): angular integrals over A0(s), A1(t)

◮ input: ππ- and ηπ-scattering phase shifts

◮ problem linear in the 3 subtraction constants

⇒ construct 3 basis solutions

◮ system solved numerically by iteration

◮ determination of the subtraction constants by fit to experimental data
or matching to chiral EFT’s
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Fit to Data
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Experimental status on η′ → ηπ+π−

◮ partial decay width [PDG 2016]:

Γ(η′ → ηπ+π−) = (84.5 ± 4.1)× 10−6 GeV

◮ most recent measurements of the charged Dalitz-plot parameters

|A(x, y)|2 ≈ |N |2(1 + ay + by2 + cx+ dx2 + ...),

x ∝ (t− u), y ∝ −s

◮ Dalitz plot extremely flat: a, b, d ≪ 1

in 10−3 BES-III [Ablikim et al. 2011] VES [Dorofeev et al. 2007]

a −47± 11± 3 −127 ± 16± 8
b −69± 19± 9 −106± 28± 14
c +19± 11± 3 +15± 11± 14
d −73± 12± 3 −82± 17± 8

terms odd in x violate C-parity (not considered in DR)
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Fit setup

◮ perform transformation of the subtraction constants

α = N̄ ᾱ, β = N̄ β̄, γ = N̄ γ̄ ⇒ A(x, y) = N̄ Ā(x, y)

◮ fix arbitrary normalisation of Ā(x, y) to be

∫

dx dy |Ā(x, y)|2 = 1

◮ decouples the Dalitz-plot distribution from the partial decay width

◮ use condition on Ā(x, y) to express γ̄ as function of ᾱ, β̄

◮ 4 experimental constraints (Γ, a, b, d), but just 3 degrees of freedom
from the DR (N̄ , ᾱ, β̄)
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Fit results

◮ χ2/ndof is close to 1 for both fits

◮ DR needs one parameter less than the phenomenological
parameterization

◮ we observe a strong anticorrelation between ᾱ and β̄

◮ fit error is dominated by the experimental uncertainty from the
Dalitz-plot data (first error)

◮ apart from the error on γ the uncertainty coming from the phase
input is small (second error)

BES-III VES

χ2/ndof 459/435 ≈ 1.06 44.5/47 ≈ 0.95
α −9.3± 1.0± 0.3 −10.2 ± 2.0 ± 0.4
β 21.5± 3.3 ± 1.9 21.9 ± 7.0± 2.6
γ 0.55 ± 0.24 ± 0.26 1.10 ± 0.52± 0.32
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Error ellipse (ᾱ,β̄)-plane

1

1.5

2

2.5

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4

β̄

ᾱ

BES-III fit
VES fit

strong tension between BES-III and VES data sets

⇒ fit results are not compatible with each other
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Dalitz-plot x-projection
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Dalitz-plot y-projection
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Dalitz-plot parameters
◮ extract Dalitz-plot parameters from the Taylor expansion of our

amplitude

◮ apart from VES b, all parameters are well reproduced

◮ allows us to extract even higher coefficients of the expansion

◮ higher coefficients extremely tiny

in 10−3 BES-III fit VES fit

a −46± 9± 2 (−47 ± 11) −154± 18± 2 (−127 ± 18)
b −66± 4± 4 (−69 ± 21) −56± 9± 4 (−106± 31)
d −71± 11± 2 (−73± 12) −85± 24± 3 (−82± 19)

κ03[y
3] 4± 1± 1 10± 2± 2

κ21[yx
2] −2± 1± 7 3± 2± 9

κ04[y
4] 3± 1± 1 3± 1± 1

κ22[y
2x2] 5± 1± 2 7± 3± 3

κ40[x
4] 0± 1± 3 0± 1± 4
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Isospin breaking effects in η′ → ηπ0π0: the π+π− cusp
isospin breaking due to the π mass difference:

◮ correction for phase space is
straightforward

◮ amplitude must have all thresholds at
the right places

⇒ difficult: ππ-phase shifts derived in
formalism relying on isospin symmetry 0
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constructing an effective π0π0-phase shift based on the neutral-pion scalar
form factor F0(s) [Colangelo et al. 2009]

correct analytic structure near the ππ-thresholds:

◮ isospin breaking ∝
√

M2
π+ −M2

π0 (nonanalytic) retained

◮ isospin breaking O
(

M2
π+ −M2

π0

)

(analytic) neglected
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Prediction: Dalitz-plot y-projection for η′ → ηπ0π0
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Summary and Outlook
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Summary

◮ derived a dispersive representation for η′ → ηππ to describe the
3-particle FSI

◮ based on analyticity, unitarity and crossing

◮ input: S-wave ππ- and ηπ-scattering phase shifts

◮ 3 subtraction constants (predictive power)

◮ experimental data is well described by our representation

◮ able to extract higher order Dalitz-plot parameters
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Outlook

◮ upcoming high statistic Dalitz-plot data from A2 (η′ → ηπ0π0) to
test our representation

◮ use chiral EFT’s to constrain the subtraction constants from
matching

◮ will serve as input for a dispersive analysis of η′ → 3π proceeding via
η′ → ηππ decay and an isospin breaking rescattering ηπ → ππ
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Backup
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Soft-pion theorem for η′ → ηππ
[Riazuddin and Oneda 1971, Adler 1965]

current algebra statement for amplitudes involving π’s in limit of pπ → 0:

◮ suggests 2 zeros (crossing) in A(s, t, u) at

s1 = 0, t1 = M2
η′ , u1 = M2

η & s2 = 0, t2 = M2
η , u2 = M2

η′

◮ protected by chiral symmetry: Adler zeros

removed in models with explicit inclusion of scalar resonance a0(980)
[Deshpande and Truong 1978]

study A(s, t, u) in our dispersive framework:

◮ real part: vanishes close to soft-π points

◮ imaginary part: peaks very close to soft-π points

corrections at soft-π points O
(

M2
π/(M

2
η′ −M2

a0
)
)

⇒ not small
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Adler-“non”-zeros for BES-III fit
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