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Introduction and Motivation



Why of interest?

» main (hadronic) contribution to the total decay width
BR(1Y — nrm) = 0.652(11) [PDG 2016]

» due to U(1)4 anomaly of QCD 7’ is not a Goldstone boson:
= ChPT breakdown for processes involving an 7/

> relatively small phase space, but FSI seem to play an important role
already seen in the study of n — 37 [talk by B. Moussallam on friday]

» potentially clean access to constrain 7 scattering (energy far below
K K inelastic threshold)

» measurements of the Dalitz plot available from BES-IIl and VES
(both ¥ — nm*7~) and upcoming data from A2 (/' — nr%7?)

» ' — 97" expected to show a cusp effect at 77 -threshold



Advantages of dispersion relations

» based on fundamental properties of analyticity, unitarity and crossing
= model independence

> in contrast to effective field theories: dispersive methods describe the
resummation of rescattering effects for considered particles



Dispersion relation for a single-variable function

complex-valued function f(s): analytic in the entire complex plane apart
from a branch cut on the real axis for s > sy

Im s » Cauchy's theorem:
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Can be extended to less restrictive high energy behaviour of f(s) by

applying subtractions



Integral equations for ' — nrr



Kinematics of the " — nmw decay

transition amplitude:
(' (1) (p2)n(p3)|T |0 (P)) = (2m)* 6 (P — p1 — pa — p3) 67 A(s, t,u)
Mandelstam variables:

s=(p1+p2)° t=(p1+ps)® u=(p2+ps)’

(charged decay channel  — nm 7~ and neutral channel 7 — nr%7°
differ only by isospin breaking effects)



Analytic properties of the ’ — nmm amplitude

» A(s,t,u) has a right-hand branch cut in the complex s-plane, starting
at the mm-threshold

» similar situation in ¢- and wu-planes, branch cuts starting at the
nm-threshold

» left-hand cuts present due to crossing



Reconstruction theorem
[Stern et al. 1993, Ananthanarayan et al. 2001, Zdrdhal et al. 2008]

» A(s,t,u) can be decomposed into single-variable functions that
possess just a right-hand cut

‘A(Sv t, U) - AO(S) + Al (t) + Al(u)
Ag contains wr-FSI effects (=0, S-wave)
Aj; contains nm-FSI effects (=1, S-wave)
> neglect discontinuities of P- and higher partial waves:
m P-wave forbidden by C-parity

nm P-wave has exotic quantum numbers

D- and higher partial waves neglected due to small phase space



Unitarity condition

s-channel:

77/ m 7]/ m

|
|
|
. |
disc = |
|
n m n Tl
|
(analogous for t- & u-channel)

discontinuity equations for the single-variable functions:

discAg(s) = 2i0(s — 4M73) [Ao(s) + Ao(s (s)] e ~190(5) gin gy (s)
disc Ay () = 21 0(t — (M, + My)?) [Ar(t) + As(8)] e D sin gy (2)
= inhomogeneous Omnés problem
do(s), 01(t): S-wave w7 and nm scattering phase shifts

Aj: inhomogeneities, angular averages of crossed-channel A; functions
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Omneés representation

dispersive representation for the functions A; in Omnés form:

Aals) =i+ ps 4 & [ o) sl

™ Janz 8”7 [Qo(8)[(s — s)

2 oo dt’ Ay (s) sin 6, (t') }
A(t) = Q1 ()t + — 210, —t)
1(t) = Qu( ){7 T Joy 402 T2 121 (E)|(# — 1)

Omnes function [Omnes 1958]:

Q(s) = exp {% /‘” & (jzf’i) }

asymptotics: dg(s) — 7, 61(t) — m and Ag(s) = O(sY), A;1(t) = O#Y)

= 3 (real) subtraction constants «, /3, needed

if A7 =0 : back to form factor relations [talk by J. Daub]
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Physical interpretation

» Omnés function: iteration of two-particle bubble diagrams

» dispersion integral: accounts for crossed-channel interactions

» subtraction constants: free parameters in the dispersion relation, not
fixed by unitarity
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nr-scattering phase shift (S-wave, I = 0)
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elastic regime: Roy equation analyses [Caprini et al. 2012]
inelastic regime: study of a coupled channel Omnés matrix [Daub et al.
2016] and large-N. ChPT constraints on n'n — (77n/KK)
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nm-scattering phase shift (S-wave, I = 1)
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phase of the scalar form factor FJ™(t) calculated out of a coupled channel
T-matrix (nm/KK) [Albaladejo, Moussallam 2015]
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Intermediate summary

» set of coupled integral equations:

= Ao(s), Ay (t): DR involving Ao (s), A (t)

= Ay(s), Ay(t): angular integrals over Ag(s), A;(t)
> input: mm- and nm-scattering phase shifts

» problem linear in the 3 subtraction constants

= construct 3 basis solutions
> system solved numerically by iteration

» determination of the subtraction constants by fit to experimental data
or matching to chiral EFT's
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Fit to Data
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Experimental status on n/ — nata™
» partial decay width [PDG 2016]:
(7 — nrtan) = (84.5 £4.1) x 1075 GeV
> most recent measurements of the charged Dalitz-plot parameters
|A(z,9))? = INP(1 + ay + by? + cx + dx® + ...),
x o (t—u), Yy X —8
» Dalitz plot extremely flat: a,b,d < 1

in 1073 BES-IIl [Ablikim et al. 2011] VES [Dorofeev et al. 2007]

a —47+11+£3 —127+16 £8
b —69+£19=£9 —106 £28 + 14
c +19+11£3 +156£11+14
d —73+£12£3 —82+17+£8

terms odd in x violate C-parity (not considered in DR)
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Fit setup

v

perform transformation of the subtraction constants

v

fix arbitrary normalisation of A(z,%) to be

/ dady | A(z,y)? = 1

v

decouples the Dalitz-plot distribution from the partial decay width

v

use condition on A(x,y) to express 7 as function of &,

v

4 experimental constraints (I, a, b, d), but just 3 degrees of freedom
from the DR (N, @, 3)

18



Fit results
» ?/ndof is close to 1 for both fits

» DR needs one parameter less than the phenomenological
parameterization

> we observe a strong anticorrelation between @ and

» fit error is dominated by the experimental uncertainty from the
Dalitz-plot data (first error)

> apart from the error on ~ the uncertainty coming from the phase
input is small (second error)

BES-III VES
x?/ndof  459/435 =~ 1.06 44.5/47 =~ 0.95

oY -934+1.04+03 —1024+20+0.4

B 21.5+33+19  21.9+£7.0+26

vy 0.55+0.24£0.26 1.10£0.52+0.32
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Error ellipse (&, 3)-plane
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strong tension between BES-IIl and VES data sets

= fit results are not compatible with each other

—-0.4
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Dalitz-plot x-projection
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Dalitz-plot y-projection
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Dalitz-plot parameters

» extract Dalitz-plot parameters from the Taylor expansion of our
amplitude

» apart from VES b, all parameters are well reproduced
> allows us to extract even higher coefficients of the expansion

> higher coefficients extremely tiny

in 1073 BES-III fit VES fit
a —46+9+2 (—47+11) —154+18+2 (—127 £ 18)
b —66+4+4(—69+21) 564944 (106 £ 31)
d ~7T14+11+£2(-73+£12) —854+24+3 (-82+19)
ro3[y°] 44+14+1 10+2+2
K1 [y2?] 24147 3+2+9
Koa[y?] 3+1+1 3+1+1
Kooly?x?] 54+1+2 7+3+3

Kao[x?] 0+1+3 0+1+4
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Isospin breaking effects in ' — nn’7Y: the 7™ 7~ cusp

isospin breaking due to the m mass difference:

» correction for phase space is
straightforward "

» amplitude must have all thresholds at
the right places

). do(s) in

rgFo (s

= difficult: wm-phase shifts derived in ° ozt

formalism relying on isospin symmetry 0
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constructing an effective 7077-phase shift based on the neutral-pion scalar

form factor Fy(s) [Colangelo et al. 2009]

correct analytic structure near the mm-thresholds:

> isospin breaking oc /M2, — M?, (nonanalytic) retained

> isospin breaking O(M?2, — M?2;) (analytic) neglected
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Prediction

- Dalitz-plot y-projection for  — nr’z7”
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Summary and Outlook
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Summary

» derived a dispersive representation for ' — nmm to describe the
3-particle FSI

» based on analyticity, unitarity and crossing
> input: S-wave w7- and nm-scattering phase shifts

» 3 subtraction constants (predictive power)

» experimental data is well described by our representation

> able to extract higher order Dalitz-plot parameters
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Outlook

» upcoming high statistic Dalitz-plot data from A2 (7' — n7°7%) to
test our representation

» use chiral EFT's to constrain the subtraction constants from
matching

» will serve as input for a dispersive analysis of 7 — 37 proceeding via
n' — nmw decay and an isospin breaking rescattering nm — 7w
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Backup
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Soft-pion theorem for ' — nrm
[Riazuddin and Oneda 1971, Adler 1965]

current algebra statement for amplitudes involving 7's in limit of p; — 0:
> suggests 2 zeros (crossing) in A(s,t,u) at

81:0, t1:M2/

0 ule,g & 82:0, t2:M2 U2:M2/

o

» protected by chiral symmetry: Adler zeros

removed in models with explicit inclusion of scalar resonance a(980)
[Deshpande and Truong 1978]

study A(s,t,u) in our dispersive framework:
> real part: vanishes close to soft-m points
> imaginary part: peaks very close to soft-m points

corrections at soft-m points O(M,%/(Mg, — M2)) = not small
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Adler-“non" -zeros for BES-III fit

A(2M?2,t,u)
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