Overview of PDG Activities

Eberhard Klempt and Ron Workman (for the Unstable Baryons)

Volker Burkert

- Eberhard Klempt
- Mike Pennington Lothar Tiator Ron Workman

Baryons@PDG

2010 edition

2012 edition

2014 edition

2016 edition

Charles Wohl Ron Workman Charles Wohl Eberhard Klempt Ron Workman

Mike Pennington Charles Wohl * Volker Burkert Eberhard Klempt Lothar Tiator Ron Workman Mike Pennington * Volker Burkert Eberhard Klempt Lothar Tiator Ron Workman

Notable changes in the 2012 edition Notation $L_{2I, 2J}$ changed to N, ΔJ^P

Baryon Summary Table

This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3or 4-star status are included in the main Baryon Summary Table. Due to insufficient data or uncertain interpretation, the other entries in the short table are not established baryons. The names with masses are of baryons that decay strongly. For N, Δ , and Ξ resonances, the πN partial wave is indicated by the symbol $L_{2I,2J}$, where L is the orbital angular momentum (S, P, D, ...), I is the isospin, and J is the total angular momentum. For Λ and Σ resonances, the $\overline{K}N$ partial wave is labeled $L_{I,2J}$. The nucleon is a pole in the P_{11} wave, and similar comments apply to the Λ and Σ .

p	P_{11}	****	<i>∆</i> (1232)	P ₃₃	****	Σ^+	P_{11}	****	≡ ⁰	P_{11}	****	Λ_c^+	****
п	P_{11}	****	$\Delta(1600)$	P_{33}	***	Σ^0	P_{11}	****	Ξ-	P_{11}	****	$\Lambda_{c}(2595)^{+}$	***
N(1440)	P_{11}	****	$\Delta(1620)$	S_{31}	****	Σ^{-}	P_{11}	****	$\Xi(1530)$	P_{13}	****	$\Lambda_{c}(2625)^{+}$	***
N(1520)	D_{13}	****	$\Delta(1700)$	D_{33}	****	$\Sigma(1385)$	P_{13}	****	$\Xi(1620)$		*	$\Lambda_{c}(2765)^{+}$	*
N(1535)	S_{11}	****	$\Delta(1750)$	P_{31}^{33}	*	$\Sigma(1480)$		*	$\Xi(1690)$		***	$\Lambda_{c}(2880)^{+}$	***
N(1650)	S_{11}	****	$\Delta(1900)$	S_{31}	**	$\Sigma(1560)$		**	$\Xi(1820)$	D_{13}	***	$\Lambda_{c}(2940)^{+}$	***
N(1675)	D_{15}	****	$\Delta(1905)$	F_{35}	****	$\Sigma(1580)$	D_{13}	*	$\Xi(1950)$		***	$\Sigma_c(2455)$	****
N(1680)	F_{15}	****	$\Delta(1910)$	P_{31}	****	$\Sigma(1620)$	S_{11}	**	Ξ(2030)		***	$\Sigma_c(2520)$	***

became

	115 - 10200 mg	6325116-030328	3KC17802 (****006835762)	NUCLEAR OF MERICAN	2500-00020000	100-000	3-20120-00	040851-0254			V2410303V32905	10:0	20.000 EV	GD.970207494-6
p	$1/2^{+}$	****	$\Delta(1232)$	$3/2^{+}$	****	Σ^+	$1/2^{+}$	****	<u>=</u> 0	$1/2^{+}$	****	Λ_c^+	$1/2^{+}$	****
п	$1/2^{+}$	****	$\Delta(1600)$	$3/2^{+}$	***	Σ^0	$1/2^{+}$	****	Ξ-	$1/2^{+}$	****	$\Lambda_{c}(2595)^{+}$	$1/2^{-}$	***
N(1440)	$1/2^{+}$	****	$\Delta(1620)$	$1/2^{-}$	****	Σ^{-}	$1/2^{+}$	****	$\Xi(1530)$	$3/2^{+}$	****	$\Lambda_{c}(2625)^{+}$	$3/2^{-}$	***
N(1520)	$3/2^{-}$	****	$\Delta(1700)$	$3/2^{-}$	****	Σ(1385)	$3/2^{+}$	****	$\Xi(1620)$		*	$\Lambda_{c}(2765)^{+}$		*
N(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{+}$	*	$\Sigma(1480)$		*	$\Xi(1690)$		***	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***
N(1650)	$1/2^{-}$	****	$\Delta(1900)$	$1/2^{-}$	**	$\Sigma(1560)$		**	$\Xi(1820)$	$3/2^{-}$	***	$\Lambda_{c}(2940)^{+}$		***
N(1675)	$5/2^{-}$	****	$\Delta(1905)$	$5/2^{+}$	****	$\Sigma(1580)$	$3/2^{-}$	*	$\Xi(1950)$		***	$\Sigma_{c}(2455)$	$1/2^{+}$	****
N(1680)	$5/2^{+}$	****	$\Delta(1910)$	$1/2^{+}$	****	$\Sigma(1620)$	$1/2^{-}$	**	Ξ(2030)	$\geq \frac{5}{2}$?	***	$\Sigma_{c}(2520)$	$3/2^{+}$	***

2012

2010

Table 1. The status of the N and Δ resonances. Only those with an overall status of *** or **** are included in the main Baryon Summary Table.

					Statu	is as se	en in –		
Particle	$L_{2I\cdot 2}$	Overall J status	Νπ	Nη	ΛK	ΣK	$\Delta \pi$	Nρ	$N\gamma$
N(939)	P ₁₁	****							
N(1440)	P_{11}	****	****	*			***	*	***
N(1520)	D_{13}	****	****	***			****	****	****
N(1535)	S_{11}	****	****	****			*	**	***
N(1650)	S_{11}	****	****	*	***	**	***	**	***
N(1675)	D_{15}	****	****	*	*		****	*	****
N(1680)	F_{15}	****	****	*			****	****	****

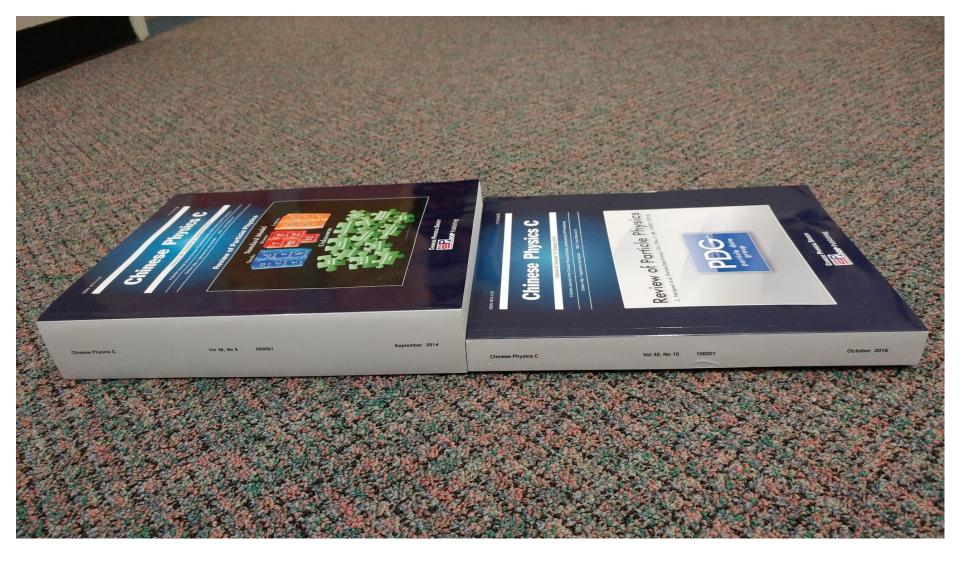
Baryon status table changed to reflect the influence of γN reactions

became

					Status as seen in —						
Particle J^P	Status overall $\pi N \gamma$.			Nη	Νη Νσ	Νω	$\omega \Lambda K$	ΣK	Νρ	Δπ	
N 1/2 ⁺	****										
$N(1440) 1/2^+$	****	****	****		***				*	***	
$N(1520) 3/2^{-}$	****	****	****	***					***	***	
$N(1535) 1/2^{-}$	****	****	****	****					**	*	
$N(1650) 1/2^{-}$	****	****	***	***			***	**	**	***	
N(1675) 5/2-	****	****	***	*			*		*	***	
$N(1680) 5/2^+$	****	****	****	*	**				***	***	

Changes in the 2014 edition

For the Note on N and Delta resonances:


Added a short section on the electroproduction of mesons

Outlined the minimal error analysis required for new results

Changes in the 2016 edition

A brief review of the $\Lambda(1405)$ has been written to address the recent flurry of publications (theory/experiment) reporting a two-pole structure. [*Ulf-G. Meissner and Tetsuo Hyodo*]

Entries for the N and Delta resonances re-ordered to emphasize pole-related quantities over Breit-Wigner values.

2014 Edition

2016 Edition

(too big)

(no Listings)

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Status: ***

I

Most of the results published before 1975 were last included in our 1982 edition, Physics Letters **111B** 1 (1982). Some further obsolete results published before 1984 were last included in our 2006 edition, Journal of Physics (generic for all A,B,E,G) **G33** 1 (2006).

N(1440) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1410 to 1450 (≈ 1430)			TECIN	COMMENT
1515 ±15	SHKLYAR	13	DPWA	Multichannel
1430 ± 8	ANISOVICH	12A	DPWA	Multichannel
1485.0 ± 1.2	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
1440 ±30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1410 ±12	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	following data for averages	s, fits,	limits, e	tc. • • •
1412 ± 2	SHRESTHA	12A	DPWA	Multichannel
1440 ±12	ANISOVICH	10	DPWA	Multichannel
1439 ±19	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$
1436 ±15	SARANTSEV	08	DPWA	Multichannel
1468.0 ± 4.5	ARNDT	04	DPWA	$\pi N \rightarrow \pi N, \eta N$
1518 ± 5	PENNER	02c	DPWA	Multichannel
1479 ±80	VRANA	00	DPWA	Multichannel
1463 ± 7	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1467	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1465	LI	93	IPWA	$\gamma N \rightarrow \pi N$
1462 ±10	MANLEY		IPWA	
1471	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
1380	1 LONGACRE		IPWA	
1390	² LONGACRE	75	IPWA	

N(1440) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
250 to 450 (≈ 350) OUF	RESTIMATE			Contraction of the second s	- 2.
605± 90	SHKLYAR	13 I	DPWA	Multichannel	- 1
365± 35	ANISOVICH	12A [DPWA	Multichannel	
284± 18	ARNDT	06 [DPWA	$\pi N \rightarrow \pi N, \eta N$	
340± 70	CUTKOSKY	80 I	PWA	$\pi N \rightarrow \pi N$	
135± 10	HOEHLER			$\pi N \rightarrow \pi N$	
34/ 1 / /	e 11 - 2 - 1 - e	r. r	1		

Listing in the PDG Review for the Roper as of 2014

Breit-Wigner values listed first

N(1440) 1/2+

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C **38** 070001 (2014).

N(1440) POLE POSITION

REAL PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1369 ± 3	SOKHOYAN	15A	DPWA	Multichannel
$1363 \pm 2 \pm 2$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1359	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
1385	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1375 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	e following data for average	s, fits,	limits, e	tc. • • •
1386	SHKLYAR	13	DPWA	Multichannel
1370± 4	ANISOVICH	12A	DPWA	Multichannel
1370	SHRESTHA	12A	DPWA	Multichannel
1363 ± 11	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
1383	VRANA	00	DPWA	Multichannel

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
189± 5	SOKHOYAN	15A	DPWA	Multichannel
$180 \pm 4 \pm 5$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
162	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
164	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
180±40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the f	ollowing data for average	s, fits,	limits, e	tc. • • •
277	SHKLYAR	13	DPWA	Multichannel
190± 7	ANISOVICH	12A	DPWA	Multichannel
214	SHRESTHA	12A	DPWA	Multichannel
151±13	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
316	VRANA	00	DPWA	Multichannel

N(1440) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
40 to 52 (≈ 46) OUR ESTIMA	TE			
49±3	SOKHOYAN	15A	DPWA	Multichannel
$50 \pm 1 \pm 2$	1 SVARC	14	L+P	$\pi N \rightarrow \pi N$
38	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
40	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
52±5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
 We do not use the following 	ng data for average	s, fits,	limits, e	tc. • • •
126	SHKLYAR	13	DPWA	Multichannel
48±3	ANISOVICH	12A	DPWA	Multichannel

Listing in the PDG Review for the Roper as of 2016

Pole values listed first

Re-ordering

2014

Breit-Wigner Mass Breit-Wigner Width

Pole PositionElastic Pole Residue $\pi N \rightarrow \pi N$ Inelastic Pole Residue $\pi N \rightarrow \pi \Delta$ etc

Decay Modes Branching Ratios Photon Decay Amplitudes

2016

Pole Position Elastic Pole Residue Inelastic Pole Residue

Breit-Wigner Mass Breit-Wigner Width Decay Modes Branching Ratios Photon Decay Amplitudes (at the pole) Photon Decay Amplitudes (BW values)

Original Formalism

49.1. Resonance Formation

Resonant cross sections are generally described by the Breit-Wigner formula (Sec. 19 of this *Review*).

$$\sigma(E) = \frac{2J+1}{(2S_1+1)(2S_2+1)} \frac{4\pi}{k^2} \left[\frac{\Gamma^2/4}{(E-E_0)^2 + \Gamma^2/4} \right] B_{in} B_{out},$$
(49.1)

N(1440) BRANCHING RATIOS

Retained in Listings

$$\Gamma(N\pi)/\Gamma_{total}$$

 Γ_1/Γ

Available only in past editions

$$\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}}{\Gamma_{\text{total}} \text{ in } N \pi \rightarrow N(1440) \rightarrow \Delta(1232)\pi, P-\text{wave}}{\frac{DOCUMENT ID}{TECN}} \frac{(\Gamma_{1}\Gamma_{5})^{\frac{1}{2}}}{\Gamma_{1}\Gamma_{5}}$$

Note on N and Δ Resonances (2012)

Branching ratios of a pole can be defined by

$$BR_{\text{pole}}(\text{channel } b) = \frac{|Res(\pi N \to b)|^2}{|Res(\pi N \to N\pi)| \cdot (\Gamma_{\text{pole}}/2)}.$$
 (6)

This information is, however, not given in the literature.

Listings now include related quantity

N(1440) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized r	residue in $N\pi$ –	$\rightarrow N(1440) \rightarrow \Delta \pi, P-v$	wave	
MODULUS (%)	PHASE (°)	DOCUMENT ID	TECN	COMMENT
27±2	38 ± <mark>5</mark>	SOKHOYAN 15A		
• • • We do n	ot use the followin	g data for averages, fits, lim	nits, etc.	
27 ± 2	40 ± 5	ANISOVICH 12A	DPWA	Multichannel

Photon-decay Amplitudes listed in BW and pole forms

$$\begin{split} A_{h}^{\text{BW}} &= C \sqrt{\frac{q_{r}}{k_{r}} \frac{\pi (2J+1)M_{r}\Gamma_{r}^{2}}{m_{N}\Gamma_{\pi,r}}} \tilde{\mathcal{A}}_{\alpha}^{h}. \end{split}$$
For details and examples see:
Workman, Tiator, Sarantsev,
Phys. Rev. C87 (2013) 068201

$$\begin{aligned} A_{h}^{\text{pole}} &= C \sqrt{\frac{q_{p}}{k_{p}} \frac{2\pi (2J+1)W_{p}}{m_{N}\text{Res}_{\pi N}}} \operatorname{Res} \mathcal{A}_{\alpha}^{h}, \end{aligned}$$

 $I(J^P) = 0(\frac{3}{2})$ Status: ****

Discovered by FERRO-LUZZI 62; the elaboration in WATSON 63 is the classic paper on the Breit-Wigner analysis of a multichannel resonance.

The measurements of the mass, width, and elasticity published before 1975 are now obsolete and have been omitted. They were last listed in our 1982 edition Physics Letters **111B** 1 (1982).

Production and formation experiments agree quite well, so they are listed together here.

A(1520) POLE POSITION

REAL PART

VALUE (MeV)	DOCUMENT IL	2	TECN	COMMENT	2
1517 +4	¹ KAMANO	¹ KAMANO 15		Multichannel	
• • • We do not use th	ne following data for av	erages,	fits, limi	its, etc. • • •	
1518	Z HAN G	13A	DPWA	Multichannel	
1518.8	QIANG	10	SPEC	$ep \rightarrow e'K^+X$ (fit to X)	
¹ From the preferred	solution A in KAMANO	D 15.		20 IIII III	
-2×IMAGINARY F	ART				

VALUE (MeV)	DOCUMENT IL	2	TECN	COMMENT		
16 +10	¹ KAMANO	15	DPWA	Multichannel	1	
• • • We do not us	e the following data for av	erages,	fits, limi	its, etc. • • •		
16	ZHANG	13A	DPWA	Multichannel		
17.2	QIANG	10	SPEC	$ep \rightarrow e'K^+X$ (fit to X)		
¹ From the preferm	ed solution A in KAMANO	0 15.			1	

A(1520) POLE RESIDUES

The normalized residue is the residue divided by $\Gamma_{pole}/2$.

Normalized residue in $N\overline{K} \rightarrow \Lambda(1520) \rightarrow N\overline{K}$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	
• • • We do	not use the following	ng data for averages, fits, I	imits, etc.		
0.431	-11	¹ KAMANO 15	DPWA	Multichannel	
¹ From the	e preferred solution /	A in KAMANO 15.			
Normalized	residue in NR .	$\rightarrow \Lambda(1520) \rightarrow \Sigma \pi$			
MODULUS	DHASE PI	DOCUMENT ID	TECN	COMMENT	

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	
• • • We do	not use the follow	ing data for averages, f	its, limits, etc.		
0.435	- 10	¹ KAMANO	15 DPWA	Multichannel	
1 From the	preferred solution	A in KAMANO 15.			

The new ordering is being extended to the hyperons.

More on Branching Ratios

and

Star-Rating Issues

from

Eberhard Klempt