Analysis of $\pi^-\pi^-\pi^+$ COMPASS data: role of $a_1(1260)$ meson and Deck process.

D. Ryabchikov

E18 Technische Universität München

The reaction $\pi^- p o \pi^- \pi^- \pi^+ p$ at $p_{\pi^-} = 190$ GeV

- Mass-independent Partial-Wave Analysis (PWA)
- Mass-dependent analysis
 - brief description of the model
 - results in $m(3\pi)$ bins
 - $a_1(1260)$ parametrization, fit results for $M_{a_1(1260)}$, $\Gamma_{a_1(1260)}$
 - results in t' bins and b -slopes of 1^{++} components
- Deck process
 - Deck amplitude components
 - decomposition of Deck amplitude to partial waves and comparison with mass-dependent fits of 3π data

Apparatus

The reaction

- Reggeon exchange, naturality $\eta = P_R(-1)^J_R$
- Gottfried-Jackson frame: SCM of X: $Z_{GJ} \| \vec{p}_{beam}^*, Y_{GJ} = [\vec{p}_{recoil}^* \times \vec{p}_{beam}^*]$
- Reflectivity basis for system of mesons: $|JM\epsilon\rangle = |JM\rangle - \varepsilon P(-1)^{J-M}|J-M\rangle$
- At high beam energies: reflectivity ε equal to naturality η
- unpolarised target: $\varepsilon = \pm 1$ states do not interfere

The mass-independent PWA events density:

 $\mathcal{I}(m, t, \tau) = \sum_{\epsilon} \sum_{r} \left| \sum_{i} T_{ir}^{\varepsilon}(m, t) \overline{\psi}_{i}^{\varepsilon}(\tau, m) \right|^{2} (1)$ Events intensity including production and propagation of 3π intermediate states :

 $\mathcal{I}(m,t,\tau) = \sum_{\epsilon} \sum_{r} \left| \sum_{i} \sum_{l} C_{ilr}^{\varepsilon} D_{il}(m,t,\zeta) \sqrt{\int |\psi_{i}^{\varepsilon}(\tau',m)|^{2} d\Phi_{3}(\tau')} \bar{\psi}_{i}^{\varepsilon}(\tau,m) \right|^{2} (2)$

The spin-density matrix: $\rho_{i,k}^{\varepsilon} = \sum_{r} T_{kr}^{\varepsilon} T_{kr}^{\varepsilon*}$ comparing (1) and (2) mass-dependent model for spin-density matrix reads: $\rho_{i,k}^{\varepsilon}(m,t) =$

 $\sqrt{\int |\psi_i^{\varepsilon}(\tau)|^2} d\Phi_3(\tau) \sqrt{\int |\psi_k^{\varepsilon}(\tau)|^2} d\Phi_3(\tau) \sum_r \sum_{l,m} C_{ilr}^{\epsilon} C_{kmr}^{\epsilon*} D_{il}(m,t,\zeta) D_{km}^*(m,t,\zeta)$

Mass-independent:

- partial waves are labelled as $J^{PC}M^{\epsilon}\xi\pi L$
- decay amplitudes for $\pi^-\pi^-\pi^+$ are constructed in the framework of helicity formalism
- 5 standart $\pi^+\pi^-$ isobars: $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$, $(\pi\pi)_S$ (AMP with $f_0(980)$ withdrawn) and $f_0(980)$ (FLATTE)
- rank=1 used (narrow $m(3\pi)$ and t' bins; helicity non-flip nature of Pomeron)
- 80 waves with $\varepsilon = +1$, 7 waves with $\varepsilon = -1$ and incoherent FLAT wave

Mass-dependent:

- 14x14 sub-density matrices measured independently in $m(3\pi)$ -bins and t'-bins are described by resonance model
- each partial wave is described by 1-3 resonant terms and background term
- Masses, widths and decay couplings of resonances do not depend on t', so fit should be done simultaneously in all t' intervals

sub-density matrix in the first t' bin

sub-density matrix in fourth t' bin

sub-density matrix in seventh t' bin

Bowler parametrization of $a_1(1260)$ dynamical width

The dominant decay mode is assumed to be $\rho \pi S$ $\Gamma(m) = \Gamma_0 \frac{m_0}{m} \frac{\int |\psi_{1^{++}\rho\pi S}(\tau,m)|^2 d\Phi_3(\tau)}{\int |\psi_{1^{++}\rho\pi S}(\tau,m_0)|^2 d\Phi_3(\tau)}$ Intensity: $\mathcal{I}(m) = \frac{\Gamma(m)}{(m_0^2 - m^2)^2 + m_0^2 \Gamma(m)^2}$

Phase:

 $\phi(m) = arg(\frac{1}{m_0^2 - m^2 - im_0\Gamma(m)})$

Parameters of a_J resonances, incl. systematics

 $M_{a_1(1260)} = 1298^{+13}_{-22}$ MeV, $\Gamma_{a_1(1260)} = 400^{+0}_{-100}$ MeV

t' - intensities and phases of $1^{++}0^+\rho\pi$ components

 $b_{a_1(1260)} = 12.68 \, {}^{+0.25}_{-5.25}, \, b_{a_1(1640)} = 7.2 \, {}^{+1.9}_{-0.4}, \, b_{NR} = 12.9 \, {}^{+3.5}_{-2.7}$

Deck process

Amplitudes for $\pi\pi \to \pi\pi$

Amplitude of $\pi^- N$ scattering: $T_{\pi N}(s_{\pi N}, t') = s_{\pi N} e^{-8t'}$

Pion propagator: $P(t_{\pi}) = \frac{m_{\pi}^2 e^{bt_{\pi}}}{m_{\pi}^2 - t_{\pi}}$ with $b = 1.7 \ GeV^{-1}$ and $m_{\pi} = m_{\pi^c}$ Deck decomposition to partial waves:

$$\Psi_{\textit{Deck}}(au, m, t') \sim \sum C_i(m, t') \Psi_i(au, m)$$

$6^{-+}0^{+}\rho\pi H$ used to normalize Deck contribution

$1^{++}0^{+}$ mass-dep fit of the data vs. Deck decomposition

$2^{++}1^+$ mass-dep fit of the data vs. Deck decomposition

$1^{-+}1^+$ mass-dep fit of the data vs. Deck decomposition

CONCLUSIONS

- The mass-independent PWA $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ of 46 000 000 events is carried out using set of 88 waves and for $0.1 < t' < 1.0 \text{ GeV}^2$ divided into 11 t' intervals
- First time the t'-resolved mass-dependent analysis of $\pi^-\pi^-\pi^+$ is performed using 14x14 sub-density matrix
 - The extraction of resonance parameters is based on intensity shapes and relative phase motions in $m(3\pi)$ bins
 - fitting simultaneously in set of t' intervals leads to improved separation between resonant and background components
- The $a_1(1260)$ is observed in $1^{++}0^+
 ho(770)\pi S$
 - this intensity is dominant contributing to about 30% of the total intensity
 - substantional amount of non-resonating background in $1^{++}0^+\rho(770)\pi S$ leads to large systematic uncertainties of $a_1(1260)$ parameters
- $\bullet\,$ The Deck mechanism is related to backgroud processes in diffractive production of $3\pi\,$
 - The partial-wave decomposition of Deck amplitude is performed, showing dominance of $1^{++}0^+\rho(770)\pi S$ with increase of its rate at lowest t'
 - Deck model has contributions of high orbital moment states at high $m(3\pi)$
 - It contributes to M = 1 partial waves, this can explain, in particular, dominance of background component in exotic $J^{PC}M^{\epsilon} = 1^{-+}1^{+}\rho\pi$ at low t'