Existing and future experimental possibilities in hadron spectroscopy

Focus on <u>heavy</u> quarks.

Jens Sören Lange Justus-Liebig-Universität Giessen ATHOS 4 / PWA 9 Bad Honnef, 13.–17.03.2017

Composition with Yellow, Blue and Red Piet Mondrian 1937–42 Tate Gallery, Creative Commons License

REVIEW OF XYZ STATES

?

X(3872)

X(3872)

X(3872)

at DD* threshold E_B=160±330 keV but no threshold effect Γ ≤1.2 MeV → too narrow (~10 MeV) Bugg, J. Phys. G35(2008)075005
but DD* decays <u>dominant</u> (factor ~10 larger than other decays) → molecule ?
violates isospin 𝔅(X(3872) → J/ψρ)

factor $\sim 10^2$ too large

• J^{PC}=1⁺⁺, predicted nearby χ_{c1} '

Barnes et al., Phys. Rev. D72(2005)054026

- \rightarrow mass \geq 50 MeV higher
- \rightarrow width factor \geq 100 larger no admixture observed

$$|X(3872)\rangle = c_1 |cc\rangle + c_2 |\overline{D}^0 D^{0*}\rangle$$

pure charmonium + "molecule"

Belle, Phys. Rev. D 93, 052016 (2016) full data set

?

Y STATES

OVERPOPULATION OF J^{PC}=1⁻⁻ STATES

Mass / GeV

- Non-trivial two-doublet pattern
- No higher states up to 7.0 GeV
- Dominated by $J/\psi f_0(980)~(I{=}0)$
- \rightarrow no indication for isospin violation but decays to Z(3900) isospin triplet
- decay to e⁺e[−] not seen (although 1− −) decay to D(*)D(*) not seen (although phasespace huge) → "hybrid" ?

?

Z STATES

– not connected to thresholds?

- near thresholds

Only Belle II can do both.

$$e^+e^- \rightarrow (Y(4260)) \rightarrow J/\psi \pi^{\pm} \pi^{\mp}$$

Z STATES AT BESIII

Z AT DD THRESHOLD ?

"Wrong" J^P: DD gives 0+, J/ $\psi\pi$ gives 1+ in S-wave, 0– in P-wave Would be accessible in h_c π , but phasespace very small

PUZZLE: all measured Z⁺ masses are <u>above</u> thresholds

State	$m/{ m MeV}$	Threshold	$\Delta m/{ m MeV}$
$Z_c(3900)$	$3899.0 \pm 3.6 \pm 4.9$	$D^+\overline{D}^{0*}$	+22.4
$Z_{c}(3900)$	$3899.0 \pm 3.6 \pm 4.9$	$D^0\overline{D}^{+*}$	+23.9
$Z_{c}(3900)$	$3894.5 \pm 6.6 \pm 4.5$	$D^+\overline{D}^{0*}$	+17.9
$Z_{c}(3900)$	$3894.5 \pm 6.6 \pm 4.5$	$D^0\overline{D}^{+*}$	+19.4
$Z_{c}(3900)$	$3885 \pm 5 \pm 1$	$D^+\overline{D}^{0*}$	+8.4
$Z_{c}(3900)$	$3885 \pm 5 \pm 1 \text{ MeV}$	$D^0\overline{D}^{+*}$	+9.9
$Z_c(3885)$	$3883.9 \pm 1.5 \pm 4.2$	$D^+\overline{D}^{0*}$	+7.4
$Z_{c}(3885)$	$3883.9 \pm 1.5 \pm 4.2$	$D^0\overline{D}^{+*}$	+8.8
$\mathbb{Z}_c(4020)$	$4022.9 \pm 0.8 \pm 2.7$	$D^{0*}\overline{D}^{\pm *}$	+5.6
$Z_{c}(4025)$	$4026.3 \pm 2.6 \pm 3.7$	$D^{0*}\overline{D}^{\pm *}$	+9.0

	possible?
threshold effect	yes (by loops)
tetraquark	yes (spin–spin forces)
molecules	no, if bound state (pole below threshold, $E_B > 0$)

CHARGED AND NEUTRAL Z

State	$m \; [{ m MeV}]$	Width $[MeV]$	Decay
$Z_c(3900)^+$	$3899.0 {\pm} 3.6 {\pm} 4.9$	$46 \pm 10 \pm 20$	$J/\psi\pi^+$
$Z_c(3900)^0$	$3894.8 {\pm} 2.3 {\pm} 2.7$	$29.6 {\pm} 8.2 {\pm} 8.2$	$J/\psi\pi^0$
$Z_c(3885)^+$	$3883.9 {\pm} 1.5 {\pm} 4.2$	$24.8 \pm 3.3 \pm 1.0$	$(DD^{*})^{+}$
$Z_c(3885)^0$	$3885.7^{+4.3}_{-5.7}\pm8.4$	$35^{+11}_{-12} \pm 15$	$(DD^*)^0$
$Z_c(4020)^+$	$4022.9 {\pm} 0.8 {\pm} 2.7$	$7.9 {\pm} 2.7 {\pm} 2.6$	$h_c \pi^+$
$Z_c(4020)^0$	$4023.8 {\pm} 2.2 {\pm} 3.8$	Fixed to 7.9	$h_c \pi^0$
$Z_c(4025)^+$	$4026.3 {\pm} 2.6 {\pm} 3.7$	$24.8 {\pm} 5.6 {\pm} 7.7$	$(D^*D^*)^+$
$Z_c(4025)^0$	$4025.5^{+2.0}_{-4.7} \pm 3.1$	$23.0{\pm}6.0{\pm}1.0$	$(D^*D^*)^0$

4-quark content: charged Z [ccud], neutral Z [ccuu],[ccdd] \rightarrow masses may be different BESIII, Phys. Rev. Lett. 110 (2013) 252001
BESIII, Phys. Rev. Lett. 115 (2015) 112003
BESIII, Phys. Rev. Lett. 112 (2014) 022001
BESIII, Phys. Rev. Lett. 115 (2015) 222002
BESIII, Phys. Rev. Lett. 111 (2013) 242001
BESIII, Phys. Rev. Lett. 113 (2014) 212002
BESIII, Phys. Rev. Lett. 112 (2014) 13200
BESIII, Phys. Rev. Lett. 115 (2015) 182002

X(3872) AND Z(3900) ISOSPIN TRIPLET

Wrong G-parity.

HIGH LUMINOSITY EXPERIMENTS

LHCb \rightarrow see talks by S. Eidelman T. Skwarnicki

BESIII

BEPC II (Beijing Electron Positron collider)

BESIII detector

 $e^+e^- \to (Y(4260))$

- Data taking since 2009
- Luminosity reached 1 × 10³³ cm⁻² s⁻¹ (04/05/2016, factor 100 × BESII)
- Future:

possible 10 year program (all physics topics) possible upgrade $\sqrt{(s)}$ >4.6 GeV

XYZ States | S. Lange (Giessen)

LINAC

Belle II17.05.2016G7 Science Ministers visit Belle II

Bundesministerium für Bildung und Forschung

Peak luminosity × 40 Integrated luminosity × 50 ("nano"-beam)

Phase II (all detectors w/o SVD, PXD) planned start 02/2018 possibly Y(6S)

PANDA

HESR (PANDA storage ring) dipole magnets in Jülich first delivery to Darmstadt

Potential run plan: startup phase 1×10^{31} cm⁻² s⁻¹

J. Ritman, COMPASS beyond 2020 workshop, CERN, 03/2016

NUMBER OF XYZ PER DAY

	BESIII	BELLE II (scaled from Belle, assume 40 fb ⁻¹ per day)	
X(3872	0.7 (radiative)	8.5	(Belle was 0.2)
Y(4260)	50	23.6	
Z(3900)	10	5.0	
Z(4430)	—	8.3	
	LHCb (assume 2 fb–1/year)	PANDA 1 (startup, <i>L</i> =1 x 10)	.311.7597[hep-ex]) ³¹ cm ⁻² s ⁻¹)
X(3872)	1.7 (trigger)	65	(50 nb, <i>Ֆ</i> =5%)
Y(4260)	—	1900 (<67)	(2 nb, <i>B</i> =100%)
Z(3900)	—	405 (<14)	
Z(4430)	4.7	-	

Numbers are private estimates, by scaling from publications. Events reconstructed in $J/\psi\pi(\pi)$. Luminosity per day fixed (i.e. luminosity profiles not taken into account) WHAT ADDITIONAL STATES ARE REQUIRED ?

WHICH ONE IS THE HOLY GRAIL ?

Indiana Jones 3, The last crusade

PLEASE KEEP IN MIND THE FOLLOWING PATTERN

Barnes, Godfrey, Swanson, Phys. Rev. D72(2005)054026

 4^{-+}

READY ?

TETRAQUARK DIQUARK ANTI–DIQUARK MODEL

Ebert, Faustov, Galkin Physics Letters B 634 (2006) 214–219

 4^{-+}

4–QUARK MODEL

$$H = \sum_{i} m_i + H_{\rm CM},$$

$$H_{\rm CM} = -\sum_{i,j} C_{ij} \,\lambda_i^c \cdot \lambda_j^c \,\vec{\sigma}_i \cdot \vec{\sigma}_j.$$

 $C_{cs} = 5.0 \text{ MeV}, \qquad C_{c\overline{c}} = 5.5 \text{ MeV},$

 $C_{c\bar{s}} = 6.7 \text{ MeV}, \qquad C_{s\bar{s}} = 8.6 \text{ MeV}.$

4 quarks (not diquark anti-diquark)

Color-spin basis (singlet-singlet, octet-octet)

F. Stancu Phys. Rev. D 57(1998)6778 F. Stancu, D. Brink arXiv:hep-ph/0607077

projection of gluon angular momentum onto QQ axis 0,1,2,... $\rightarrow \Sigma$, Π , Δ , ...

product of gluonic parity and charge conjugation (PC)_g "u" (negative), "d" (positive)

```
reflection of system through plane
containing QQ axis
Superscript ",+" or ",-",
Juge, Kuti, Morningstar
```

 $r_0(V(r)-V(2r_0))$ $^{-2}$ 2 3 r/r_0 Π Σ_{g}^{+} Ρ 1Р_{п.} 0.5 () Phys. Rev. Lett. 82(199)4400 r (fm) Nucl. Phys. Proc. Suppl. 63(1998)3261

1.5

Mass lower Mass higher

 4^{-+}

HUNTING THE 0++

Tetraquark "ground state" ~3700

Non-existing (?) $D\overline{D}$ molecule ~3770 (one-pion exchange forbidden by parity)

Radiative ψ decays at CRYSTAL BALL

Radiative ψ decays at BESIII

450 Mill. $\psi^{\rm \cdot}$ decays on tape (2009 and 2012 data)

HUNTING THE 1+-

Diquark anti-diquark tetraquark 1+- partner of X(3872), ~20 MeV higher

Hadro-charmonium 1+- partner of X(3872), ~70 MeV lower

1+- states

- difficult in B decays e,g. h_c never seen at Belle $0-+ \rightarrow 0-+ 1+$ violates factorisation
- BESIII

 $\psi^{\textrm{`}} \rightarrow \pi^{\textrm{0}} \,\, \textrm{h}_{\textrm{c}}$

violates isospin (BR small) (8.6 \pm 1.3) \times 10⁻⁴ but still significant yield

• PANDA

formation pp $\rightarrow h_c$ possible (1.27±0.74) x 10⁶ events per day in startup phase our estimate, by detailed balance from $\mathcal{B}(h_c \rightarrow \text{pp})$ LHCb Eur. Phys. J. C73(2013)2462

• pp $\rightarrow h_c$ ' unobserved yet \rightarrow see next slide

BESIII, Phys. Rev. D 86, 092009 (2012) tagging on η_c (16 decays) 106±4 mill. ψ' events 832±35 fitted h_c events

h_{c} '(1+-) at $\overline{P}ANDA$ (MC)

Direct search for 1+- partner of the X(3872) $B^{\pm} \rightarrow J/\psi \eta K^{\pm}$ $\mathcal{B} = (1.24 \pm 0.14) \times 10^{-4}$

2 photons in η decay \rightarrow maybe advantage for Belle II \rightarrow plan: integrated luminosity \times 50 by \geq 2025

Related: 1 - (S=1) to 1 + - (S=0)SPIN-FLIP

Z⁺ states at BESIII

 $\mbox{Z}_{c}(3900)$ decays to $\mbox{J}/\psi\pi$ 1– 0– gives 1+ (assuming S-wave, L=0))

Threshold is **DD*** 0– 1– gives 1+

 $Z_c(4020)$ decays to $h_c\pi$ 1+ 0- gives 1-(assuming S-wave, L=0)

Threshold is **D*D***

1 - 1 - gives 0 + (1 - 1)

requires L=1 ! P-wave decay, maybe with heavy spin-flip ?

THRESHOLD EFFECTS MUST BE S-WAVE !

Z DOUBLET

$$\frac{Z_{c}(4020, 4025)}{Z_{c}(3900, 3885)} 1^{-, S_{cc}=0}$$

 $e^+e^-
ightarrow \pi^+\pi^-h_c$

Acknowledgement: this holy grail by thistoph Hanhart. Y(4260) decays to $J/\psi(S=1)\pi\pi$ and to $h_c(S=0)\pi\pi$? Heavy quark spin-flip !

- \rightarrow disfavors hybrid
- \rightarrow disfavors hadro-charmonium

1++ and 1--

- X(3872) is seen in radiative decays of Y(4260) BESIII, Phys. Rev. Lett. 112(2014)092001
- X(3872) is seen in *B* decays
- natural to assume: also Y(4260) should be seen in *B* decays $\mathcal{B} < 2.9 \times 10^{-5}$ Belle II, assume 40 fb⁻¹ per day ~10% reconstruction efficiency \rightarrow ~34 days !
- And: if Y(4260) is a hybrid, there should be a 1++ partner to 1 - -(~70 MeV lower)

Only search up to data BaBar, Phys.Rev.D73(2006)011101 211 fb^{-1} (~1/2 of BaBar data, ~1/5 of BaBar+Belle data)

More 1++: $J/\psi\phi$ [ccss] in *B* decays

More 1++: $J/\psi\phi$ [ccss] in *B* decays

- 1++ doublet \rightarrow problem for diquark anti-diquark tetraquarks solution: interpret X(4140) as threshold effect
- J/ψφ hadro-charmonium: doublet o.k., but
 - sequence should be 0++, 1++, 0++, 1++
 - $m(J/\psi)+m(\phi)=4116 \text{ MeV} \rightarrow \underline{\text{positive}}$, binding energy" (~20 MeV)
- molecules ? ightarrow no isospin! ightarrow η exchange Karliner, Rosner, Nucl. Phys. A 954(2016)365

More 1++: $J/\psi\phi$ [ccss] in *B* decays

Upper limit on X(4140) Belle $\mathcal{B} < 6 \times 10^{-6}$ at 90% CL

2016/17: factor ~10 more *B* mesons (CMS and LHCb)

ightarrow entering $\mathscr{B}\sim$ 10⁻⁷ regime ightarrow new observations

Acknowledgement to Changzheng Yuan.

THANK YOU.

BACKUP

The connection between the X and the Y e+e- \rightarrow Y(4260) \rightarrow X(3872) γ

NEW! COMPASS – Photoproduction of X(3872)

$$\begin{split} & \text{Muon data of } 2003\text{--}2010 \\ & \text{N}_{\psi(2S)} = 16.1\pm5.2 \\ & \text{N}_{X(3872)} = 13.9\pm4.9 \\ & \sigma_{\text{M}} = 20.6\pm6.1 \text{ MeV} \end{split}$$

COMPASS Preliminary J. Bernhard, BARYON'16 A. Gridin, 121th JINR Scientific Council

Maiani, Piccinini, Polosa, Riquer ("MPPR") Phys.Rev. D89 (2014) 114010

Mt. Tsukuba

SuperKEKB asymmetric B meson factory, $e+e- \rightarrow BB$ adjusted to Y(4S) resonance, $\sqrt{s}=10.6$ GeV different beam energies 8 GeV \rightarrow 7 GeV (lower emittance) 3.5 GeV \rightarrow 4 GeV (Touschek lifetime) Upgrade: luminosity peak x40, integrated x50

Belle II Detector

inac

Nano-Beam Scheme

First turns and successful storage of beams in the SuperKEKB electron and positron rings

March 2nd, 2016

High Energy Accelerator Research Organization (KEK)

June 21, 2016: LER beam current exceeded 1 Ampere

	Belle II XYZ reach	AAA	A
	assume 50	$ab^{-1} (\geq 202)$	24)
State	Production and Decay	N	Tre
X(3872)	$B \rightarrow KX(3872), X(3872) \rightarrow J/\psi \pi^+ \pi^-$	$\simeq 14400$	
Y(4260)	ISR, Y(4260) $\rightarrow J/\psi \pi^+\pi^-$	$\simeq 29600$	
Z(4430)	$B \rightarrow K^{\mp} Z(4430), Z(4430) \rightarrow J/\psi \pi^{\pm}$	$\simeq 10200$	1111

 \rightarrow search for rare decays feasible

Super KEKB *

Bundesministeriur für Bildung

und Forschung

same number of X(3872):

- LHCb (upgrade) with ≥40 fb⁻¹ (2026?) (assume no change in trigger efficiency)
- PANDA \simeq 20 days (pp \rightarrow X(3872))

Belle II DEPFET Pixel Detector

Univ. Bonn, DESY, Univ. Giessen, Univ. Göttingen, Univ. Hamburg, Univ. Heidelberg, KIT Karlsruhe, Univ. Mainz, HLL München, MPI München, LMU München, TU München

P-wave tetraquarks

In the diquark anti-diquark model.

Label	J^{PC}	$ s_{qQ}, s_{\bar{q}\bar{Q}}; S, L\rangle_J$	$ s_{q\bar{q}}, s_{Q\bar{Q}}; S', L'\rangle_J$	Mass
Y_1	1	$ 0,0;0,1 angle_{1}$	$(0,0;0,1\rangle_1 + \sqrt{3} 1,1;0,1\rangle_1)/2$	$M_{00} - 3\kappa_{qQ} + B_Q$
Y_2	$1^{}$	$(1,0;1,1\rangle_1 + 0,1;1,1\rangle_1)/\sqrt{2}$	$ 1,1;1,L' angle_1$	$M_{00} - \kappa_{qQ} + 2a + B_Q$
Y_3	$1^{}$	$ 1,1;0,1 angle_{1}$	$\left(\sqrt{3} 0,0;0,1 angle_1- 1,1;0,1 angle_1 ight)/2$	$M_{00} + \kappa_{qQ} + B_Q$
Y_4	$1^{}$	$ 1,1;2,1 angle_{1}$	$ 1,1;2,L' angle_1$	$M_{00} + \kappa_{qQ} + 6a + B_Q$
Y_5	1	$ 1,1;2,3\rangle_{1}$	$ 1,1;2,L' angle_1$	$M_{00} + \kappa_{qQ} + 16a + 6B_Q$

Is the $Z_c(3900)$ a kinematical effect ?

Bugg J. Phys. G35(2008)075005, Phys. Lett. B598(2004)8 Chen et al., Phys. Rev. D84(2011)094003

- threshold opening of a 2nd channel
- channels are "coupled" (by unitarity of T matrix)
- advantage:

lineshape may peak above threshold (although pole below threshold)

- disadvantage:
 - couplings unknown
 - some parameterisations only 1st order (assume small couplings)

Is the $Z_c(3900)$ a kinematical effect ?

Is the $Z_c(3900)$ a kinematical effect ?

Is the $Z_c(3900)$ a kinematical effect ?

The quest for the pattern

Where is the J=0 partner of the Y(4260) ?

molecule

(e.<u>g.</u> Guo, Hanhart, Meißner, Wang, Zhao, PLB 725(2013)127) $[DD_1]$ for 1– is the ground state

 \rightarrow mass for [D*D₁] for 0– would be ~135 MeV higher

- tetraquark (e.g. Burns et al., Phys.Rev. D82 (2010) 074003)
 - L=0 only has positive parity states: 0++ (~3770)
 - L=1 \rightarrow 0-+ would be 100-150 MeV higher (spin-spin forces)
- hadro-charmonium

$$\begin{split} \mathsf{Y}(4260) &= \left[\mathsf{J}/\psi \ \mathsf{f}_0\right] \\ \left[\eta_c \ \mathsf{f}_0\right] \text{ is } 0\text{-}+ \to \text{mass} \sim 120 \text{ MeV lower} \end{split}$$

• hybrid

e.g. Kou, Pene, PLB631(2005)164 1-- is $S_{cc} = 0$, $L_{cc} = 0$, $L_{gluon} = 1$, 0-+ would be $S_{cc} = 1$, $L_{cc} = 1$, $L_{gluon} = 0$, ~500 MeV higher

\rightarrow search in radiative transistions

$$\sigma(m) = B_1(m) \sqrt{\frac{P(m)}{P(M_1)}} + e^{i\phi} B_2(m) \sqrt{\frac{P(m)}{P(M_2)}}^2$$

B_i(m): constant width Breit-Wigner function

P(m): 3-body phase space factorφ: relative phase between tworesonances

significance of two structures assumption over one structure > 10 σ

	M (MeV)	$\Gamma_{ m tot}$ (MeV)	$\Gamma_{ m ee}$ •Br (eV)	φ (rad)
Y(4220)	4218.4±4.0±0.9	66.0±9.0±0.4	4.6±4.1±0.8	
Y(4390)	4391.6±6.3±1.0	139.5±16.1±0.6	11.8±9.7±1.9	3.1±1.5±0.2

NEW! BESIII Preliminary, Jianming Bian, QWG'16

Y(4260)

```
h_c pi+ pi-
(4218.4+5.5-4.5 \pm 0.9) MeV
(66.0+12.3-8.3 \pm0.4) MeV
```

```
J/psi pi+ pi-, BESIII
(4222.0 \pm 3.1 \pm 1.4) MeV
(44.1 \pm 4.3 \pm 2.0) MeV
```

J/Psi pi+ pi-, PDG4251 \pm 9 MeV 120 \pm 12 MeV

Prospect for X(3872) at Belle II

- yield of X(3872) \rightarrow J/ $\psi\pi$ + π in 2020-21 (assume 10 ab⁻¹) will be about Belle I yield of $\psi' \rightarrow$ J/ $\psi\pi$ + π -
- if $\Gamma_{\chi(3872)} > 0.23$ MeV (bias) the width of the X(3872) can be measured with a systematic error of ± 110 keV (already proven by Belle I)
- width measurement in X(3872) → J/ $\psi\gamma$ expected yield N~350 in 2020–21 scaled from Belle, Phys. Rev. Lett. 107(2011)091803 (factor ≥2 more than X(3872) → J/ $\psi\pi$ + π - at Belle I) → monoenergetic photon provides 4th constraint (Δ E/E~2%) → systematic error on width may become ≤110 keV

What important knowledge is missing? \rightarrow Width of X(3872)

upper limit on width (Belle I), $\Gamma < 1.2$ MeV

for pure χ_{c1} ' charmonium state, prediction $\Gamma = 40$ keV G. Y. Chen, J. P. Ma, arXiv:0802.2982[hep-ph], Phys. Rev. D77(2008]097501.

if molecule

- must be larger than width of D*
 - $\Gamma > 82.3 \pm 1.2 \pm 1.4 \text{ keV}$
 - E. Braaten, arXiv:0711.1854 [hep-ph], Phys. Rev. D77(2008)034019.
- long-range molecular components in the wavefunction?

 \rightarrow measure the <u>width</u> of the X(3872) in the sub-MeV regime

Is the X(3872) exotic ?

TETRAQUARK

 $[qQ]_8[qQ]_8$

Diquarks are colored

Maiani, Riquer, Piccinini, Polosa, Burns; Ebert, Faustov, Galkin; Chiu, Hsieh; Ali, Hambrock, Wang

Bugg; Swanson

MOLECULE

Intriguing Analogon

Tornqvist; Swanson; Braaten, Kusonoki, Wong; Voloshin; Close, Page Guo, Hanhart, Meissner

Is the Y(4260) exotic ?

TETRAQUARK

higher excitation ?

Maiani, Riquer, Piccinini, Polosa, Burns

MOLECULE

heavier mesons $(\overline{DD}_1(2460))$?

[Swanson, Rosner, Close Guo, Hanhart, Meissner

HADRO-CHARMONIUM $[J/\psi f_0(980)]$

Voloshin, Li (Guo, Hanhart, Meissner)

[QQ]₈g

HYBRID

Zhu; Kou, Pene; Close, Page; Lattice QCD, Bernard et al.; Mei, Luo Z_c⁺ states at BESIII

Decay to $D\overline{D}^*$ dominating $R = 6.2 \pm 1.1 \pm 2.7$ similar to X(3872)

favors molecule interpretation

but:

very different from Y(4260) ! (decay to $D^{(*)}D^{(*)}$ suppressed)

although here: Y(4260) decays !

. ,

Z_c⁺ states at BESIII

Y(4260) Parameters

	BaBar 1	CLEO-c 2	Belle 3	Belle 4	BaBar 5	BaBar 6
\mathcal{L}	$211 { m ~fb^{-1}}$	$13.3 \ {\rm fb}^{-1}$	$553 {\rm ~fb^{-1}}$	$548 \ {\rm fb}^{-1}$	$454 {\rm ~fb}^{-1}$	$454 {\rm ~fb}^{-1}$
Ν	125 ± 23	$14.1^{+5.2}_{-4.2}$	165 ± 24	$324{\pm}21$	344 ± 39	_
Significance	$\simeq 8\sigma$	$\simeq 4.9\sigma$	$\geq 7\sigma$	$\geq 15\sigma$	_	_
m / MeV	$4259\pm8^{+2}_{-6}$	$4283^{+17}_{-16}\pm4$	$4295 \pm 10^{+10}_{-3}$	$4247 \pm 12^{+17}_{-32}$	$4252\pm6^{+2}_{-3}$	$4244 \pm 5 \pm 4$
Γ / MeV	$88 \pm 23^{+6}_{-4}$	70_{-25}^{+40}	$133 \pm 26^{+13}_{-6}$	$108 \pm 19 \pm 10$	$105 \pm 18^{+4}_{-6}$	$114^{+16}_{-15} \pm 7$

[1] BaBar Collaboration, arXiv:hep-ex/0506081, Phys. Rev. Lett. 95(2005)142001.

[2] CLEO-c Collaboration, arXiv:hep-ex/0611021, Phys. Rev. D74(2006)091104.

[3] Belle Collaboration, arXiv:hep-ex/0612006.

[4] Belle Collaboration, arXiv:0707.2541[hep-ex], Phys. Rev. Lett. 99(2007)182004.

[5] BaBar Collaboration, arXiv:0808.1543[hep-ex].

[6] BaBar Collaboration, arXiv:1204.2158[hep-ex], Phys. Rev. D86(2012)051162.

Y(4260), THRESHOLD EFFECT?

	BaBar 1	CLEO-c 🙎	Belle 3	Belle 4	BaBar 5	BaBar 🙆
L	$211~{\rm fb}^{-1}$	$13.3 {\rm ~fb}^{-1}$	$553 {\rm ~fb^{-1}}$	548 fb^{-1}	$454~{\rm fb}^{-1}$	$454~{\rm fb}^{-1}$
N	125 ± 23	$14.1^{+5.2}_{-4.2}$	165 ± 24	$324{\pm}21$	344 ± 39	_
Significance	$\simeq 8\sigma$	$\simeq 4.9\sigma$	$\geq 7\sigma$	$\geq \! 15\sigma$	_	_
$m \ / \ { m MeV}$	$4259 \pm 8^{+2}_{-6}$	$4283^{+17}_{-16}\pm4$	$4295{\pm}10^{+10}_{-3}$	$4247{\pm}12^{+17}_{-32}$	$4252{\pm}6^{+2}_{-3}$	$4244{\pm}5{\pm}4$
Γ / MeV	$88 \pm 23^{+6}_{-4}$	70_{-25}^{+40}	$133 \pm 26^{+13}_{-6}$	$108{\pm}19{\pm}10$	$105{\pm}18^{+4}_{-6}$	$114^{+16}_{-15} \pm 7$

[1] BaBar Collaboration, arXiv:hep-ex/0506081, Phys. Rev. Lett. 95(2005)142001.

[2] CLEO-c Collaboration, arXiv:hep-ex/0611021, Phys. Rev. D74(2006)091104.

[3] Belle Collaboration, arXiv:hep-ex/0612006.

[4] Belle Collaboration, arXiv:0707.2541[hep-ex], Phys. Rev. Lett. 99(2007)182004.

[5] BaBar Collaboration, arXiv:0808.1543[hep-ex].

[6] BaBar Collaboration, arXiv:1204.2158[hep-ex], Phys. Rev. D86(2012)051162.

[7] Belle SVD Group, R. Abe et al., Nucl. Instr. Meth. A478(2002)296.

Y(4260), blocked decays

$$\begin{split} & \text{BaBar, Phys.Rev. D79, 092001(2009)} \\ & \frac{\mathcal{B}(Y(4260) \to D^*\overline{D})}{\mathcal{B}(Y(4260) \to J/\psi\pi^+\pi^-)} < 34 \\ & \frac{\mathcal{B}(Y(4260) \to D^*\overline{D}^*)}{\mathcal{B}(Y(4260) \to J/\psi\pi^+\pi^-)} < 40 \end{split}$$

BaBar, Phys.Rev.D76:111105,2007 $\frac{\mathcal{B}(Y(4260) \rightarrow D\bar{D})}{\mathcal{B}(Y(4260) \rightarrow J/\psi\pi^{+}\pi^{-})} < 7.6$

- $Y(4260) \rightarrow e+e-$ not observed $\mathcal{B}(J/\psi\pi+\pi-) \times \mathcal{B}(e+e-) = (7.5\pm0.9\pm0.8) \text{ eV}$ BaBar, arXiv:0808.1543 \rightarrow factor 10^2 smaller than ψ'
- $Y(4260) \rightarrow D^{(*)}\overline{D}^{(*)}$ not observed \rightarrow factor ~60 smaller than $\psi(3770)$ (but much larger phasespace)
- \rightarrow hybrid ? e.g. DD p-wave decay "spatia<u>l</u> sum rule" c and c are spatially separated can not couple to L=1

Y(4260) – different background ?

X(3872), isospin ?

- almost no non-resonant 3-particle phasespace component
 2 particle decay (back-to-back)
- dominated by ρ⁰ (~100%)
 <u>ISOSPIN VIOLATING</u>
- only two similar decays known in charmonium $\mathcal{B}\sim 10^{-3}$ but branching fraction of $\mathcal{B}(X(3872) \rightarrow J/\psi\rho)$ is order of $\sim 10\%$ factor $\sim 10^2$ too large

 ρ/ω interference can explain lineshape. (proposed by Terasaki, Prog. Theor. Phys. 122(2010)1285) $\rightarrow X(3872)$ does not "contain" isospin Yield 21+-11 (<40.2) for h_c

 \rightarrow Panda 1.47 \pm 0.86 µb (our value, by detailed balance) 1 x 10³¹ \rightarrow 0.864 pb⁻¹ per day \rightarrow (1.27 \pm 0.74) M events per day LHCb, 1303.7133[hep-ex], Eur.Phys.J. C73 (2013) 2462

increases cross section for smaller $\ensuremath{\mathsf{m}_X}$

 \rightarrow more yield than X(3872)

 \rightarrow Y(5S) appears exotic itself !

Y(6S) at Belle II

Y5S is maybe exotic itself (B(Y(5S) \rightarrow Y(nS) $\pi\pi$) factor 1000 too high) Y5S not observed (yet) at LHCb plan: take data at Y(6S) 11020 in phase II (02-06/2018'), 20+-20 fb⁻¹ Is Y(6S) exotic, maybe BB**(0-1+) or B*B**(1-1+) molecule ? for details see Bondar, Mizuk, Voloshin, Mod. Phys. Lett. A32 (2017) 1750025

Y(5S) Decays

π^+ π^- missing mass

First observation of $h_b(1P)$ and $h_b(2P)$

Belle, 121.4 fb⁻¹ Phys. Rev. Lett 108(2011)032001 arXiv:1103.3419[hep-ex]

 4^{-+}

 $e^+e^- \to \Upsilon(5S) \to h_b(mP)\pi^{\pm} \pi^{\mp}$

resonant state?

Belle, Phys. Rev. Lett 108 (2012) 122001 Belle, Phys. Rev. D 91, 072003 (2015)

$J^{P}=1^{+}$

preferred for both (other J^P rejected by $\geq 6\sigma$)

2016Nov. 23-25

Reminder:

Kai Zhu (IHEP) 4th workshop on the XYZ particles 2016Nov. 23-25 Y(4260) not seen at hadron machines