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this is a highly nontrivial 
environment :
small world (10-15m) 
of fast (v~c) particles 
exerting ~1T forces !!! 

QCD predicts matter is made from confined 
(non-existing) quarks and gluons with >95% 

mass coming from interactions!

What are the constituents of hadrons ? 
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K-->π+ π- π-

π : C.F. Powell (1947)

ω : L.Alvarez (1961)

φ: P.L.Connolly. 

Pevsner (1962)

ρ: A.R.Erwin (1961) 

ρ: J. A. Anderson (1960) 

η: A. Pevsner (1961)

How do resonances 
appear in the data 

(experiment/lattice) ?
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Exp.  
Th.  

Amplitude Analysis   
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JPAC 
• Started in the Fall of 2013 to 

support the extraction of physics 
results from analysis of 
experimental data from JLab12 and 
other accelerator laboratories.

• Work is on theoretical, 
phenomenological and data 
analysis tools in close collaboration 
with  theorists and  experimentalists 
worldwide.

• Contribute to education of new 
generation of practitioners in 
physics of strong interactions. 
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Amplitude analysis in hadron spectroscopy 
• Resonances appear as poles in  

partial wave amplitudes. 

• Amplitudes are agnostic as to the 
nature of these poles (other “dials” 
needed to discriminate) 

• We do not know (aka. from “exact 
calculations”) where these poles 
are. 

• There can be other singularities 
producing “bumps” in the physical 
region, or resonances can produce 
“dips”

• We put these “by hand” and have 
data (and lattice) to discriminate 
between hypotheses. 
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Resonance input

• PDG

• Quark Models

• Lattice 

• Regge theory 

• Other 
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S -matrix constraints 
”All constraints are equal but some are more 

equal the another”

In constructing amplitudes, one must make a 
judgment which ones are the most important.  

• Conservation of probability: appearances of 
real axis singularities, bound state vs 
resonance, Regge phenomena, absence of 
overlapping singularities,…

• Causality/Lorentz symmetry: crossing, 
analyticity, dualities, barrier factors, 
kinematical singularities, polynomial 
bounds,…

• QCD: appearance of bound states/
resonances, low energy limits, exchange 
degeneracy, … 
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• Partial waves have 
complicated analytical 
properties; truncation violates 
crossing symmetry, 
Mandelstam analyticity, 
asymptotic behavior ….

Anatomy of Amplitudes
(2-to-2)

… but PWA used the most (?) 

A(s, t)

t

s

u

Isobar Model 

A(s, t) =
1X

l

Al(s)Pl(zs)

A(s, t) =
L

max

<1X

l

al(s)Pl(zs) + (s ! t) + (s ! u)

al(s) 6= Al(s)

There are various representations 
• Mandelstam 
• Khuri
• Sommerfeld-Watson
• DAMA
• PWA
• …
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Isobar Model 

Other representations of  A(s,t)

• Focuses on individual partial waves 
• Dynamical consequences of crossing are missing 

• Emphasize duality between resonances and reggeons 
• Individual partial waves are “averaged” 
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qij =
�1/2(s,m2

i ,m
2
j )

2
p
s

threshold factors (λ) => from “forces” e.g. cross channel 
process

(One needs to be careful and not associate divergencies 
~q2L with subtractions e.g. in  N/D equations)

(q34)L34

1

2

3

4

(q12)L12

Al(s)

What happens when we try to contract an analytical amplitude 
from a partial wave  (this is important ! )

A(s, t, u) AL(s)PL(zs)
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for UU amplitudes there is a singularity at s = 0! 

� = (m2
1 �m2

2)(m
2
3 �m2

4) 6= 0

(q12q34)
LPL(zs) = (q12q34zs)

L + · · · = f(s, t, u)[1 +O(
�

s
) +O(

�

s
)2 · · · ]

common solution

but this introduces polynomials (Regge 
solution based on daughter trajectories) 

(q34)L

1

2

3

(q12)L
Al(s)

4

A(s, t, u) =
g12g34
m2

R � s
(q12q34)

LPL(zs)

g12g34 ! sLg12g34
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for external particles with spin crossing (Lorentz 
transformations) leads to Wigner rotations

L-S amplitudes, Helicity amplitudes, Spinorial amplitudes   

There is an “open market” for amplitude framework 

As
�i
(s, t) vs At

µi
(s, t)

1

2

3

4

1 3

2 4
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Examples: 

It would be useful to examine such parametrization and determine 
systematic uncertainties  

qL12q
L
34PL(cos ✓) analytical function of (t,u) [ 1 + O(1/s) + ..]

How to handle the 1/s singularities 

Make sure complexities come from physics 
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Perfecting Isobar Model  (light meson decays)

• η → 3π: Isospin violating 
decay sensitive to the quark 
mass difference.

• Slow convergence of ChPT 
(importance of singularities)

• Slope parameter in neutral 
decay, a puzzle for ChPT.  

The Good: requires two body amplitudes only, 
connection to  energy elastic scattering, partial wave 
expansion 
The Bad : Difficult to make systematic improvements 
(e.g. inelastic channels)
The Ugly : High energy is parametric and “very wrong”. 

Niecknig, Kubis, Schneider‘12,
Danilkin et al. JPAC’15,’16
Escribano, Masjuan,Sanz-Cillero’11, Kubis & Schneider’12,
Perotti, Niblaeus, Leupold’15
G. Colangelo, et al’16
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Resonances in peripheral  production 

target
“slow”

beam

“fast”

exchanged  
particle  
“Force”

• Assess factorization, develop 
of 2-to-2 reactions, including 
reggeon - particle scattering.

lightest hybrid
couples to

⌘⇡

⌘0⇡

3⇡
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Regge analysis of meson resonance production

• Key to determine separation 
meson from baryon 
resonance production

γ π0

p p

ω, ρ, b, h⇢/!

b/h

 

 
 

 

   

 

Data collection:
• γ,π,K beams 
• 0-, 1-,2+  peripheral meson production
• Universal data format

axial-vector exchanges strength decreases with energy

• correction to NWSZ (cut)

5/11



INDIANA UNIVERSITY    
18

2 -t (GeV/c)
0 0.5 1 1.5 2 2.5

Σ  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Preliminary

<9.0 GeVγGlueX 8.4<E
=10 GeVγSLAC E

0π p→p γ
(a)

2 -t (GeV/c)
0 0.5 1 1.5 2 2.5

Σ  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

JPAC
Donnachie
Laget

η p→p γ(b)

�p ! ⌘p

!
⇢

J. Nys, V. Mathieu, at this meeting 
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• Develop analytical constraints  to relate 
resonance production with high energy 
(Regge) dynamics (e.g. FESR’s) 

• Understand how parametrize the “thick 
lines” : Dynamics (isobars, K-matrices, 
left hand cuts, right hand cuts, 
resonance “seeds”, ….

• Understand how to parametrize the 
“thin lines” : Kinematics (kinematical 
singularities, helicity, L-S, covariant 
amplitudes, …) beam

“fast”

exchanged  
particle  
“Force”

Regge  
exchange

(Exotic) resonance 
production

6/11

Resonances in peripheral  production 
(cont.)  
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π−
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η, η′
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P
p

COMPASS  Phys. Lett. B740 (2015)
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I

II

sth

Re s

Im s

K�1(s) = C0 � C1s�
NX

r=1

Cr
2

Cr
3 � s

K(s) =
X

r

g2r
m2

r � s
+
X

j

�j s
j

Pole Extraction - K-matrix vs. CDD poles
• Need reliable 

parameterizations to extract 
resonance parameters

• Models must satisfy unitarity 
conditions

• In addition, resonance pole 
positions must be on 
unphysical sheets

Im t(s) = ⇢(s)|t(s)|2 t�1(s) = K�1(s)� s

⇡

Z 1

sth

ds0
⇢(s0)

s0(s0 � s)
=)

No obvious constraints 
on parameters

If                   , then NO 
poles on first sheet!
(Herglotz function)

C1, C2 > 0
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M. Mikhasenko, at this meeting 
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COMPASS 
(2015)
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applied in analysis of 2-to-3 reactions! 
forward-backward asymmetry due to P wave !
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7/11

work in progress 



INDIANA UNIVERSITY    

More on 
crossing and 

duality

∫Nds Im A(s,t)
a c

b d

a c

b d

us
-

u
u
d

K+p

u
s-

u
u
d

K-p

ρ,a2

Im A(s,t)= 0

 Im ARegge(N,t) 

Im A(s,t) ≠ 0
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Pc(4450) in J/ψ photo production

A.Blin, at this meeting 
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“Peierls mechanism” 
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II(-)

triangle singularity
(log. branch point, III)

resonances III 

Singularities, is all that matters: poles and cuts

virtual state IV

molecules/resonances  II 

Cusps from singularities  below threshold 
Bumps from singularities above threshold 

experiment  I 

The view from above the heavier threshold 
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A(s,t)

s

β
sp-s
___

t

β
sp-t
____

under very 
special 

conditions 

physical 
region 

s=sp 
(pole)s=sb 

(branch point)

Al(s)

⇤b ! K�pJ/ 

s

t

Origin of singularities (exchanges constrained by unitarity)
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A.Pilloni at this meeting  
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• Duality:  resonances in direct channel dual to reggeons in cross 
channels and backgrounds are dual to the pomeron

• All resonances are “connected”: resonances belong to Regge 
trajectories (reggeons) 

• Asymptotics: determined by Regge poles

• Unitarity: imaginary parts determined by decay thresholds

Properties:

Veneziano amplitude satisfies all of the above except 
unitarity 
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Veneziano amplitude:  “compact” expression for the full 
amplitude 

A(s,t) can be written as sum over resonances in ether 
channel.  

Note: in V-model resonance couplings, β, are fixed! 

resonance/reggeon in s=m122

β(t) 

[k - α(s)]

_______
~ B.W. propagator

resonance/reggeon in t=m232

β(s) 

[k - α(t)]

_______

A(s, t) =
�(�↵(s))�(�↵(t))

�(�↵(s)� ↵(t))

A(s, t) =
X

k

�k(t)

k � ↵(s)
=

X

k

�k(s)

k � ↵(t)

�k(t) / (1 + ↵(t))(2 + ↵(t)) · · · (k + ↵(t))

↵(s) = a+ bs
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Resonances couplings, β, should depend on final state particles:  a linear 
superposition of Veneziano amplitudes can be used to suppress or enhance 
individual resonances or trajectories 

2

s1 s2 s3 s4 s5 s6 s

l

1

2

3

4

5

leading 1st 2nd 3rd

FIG. 1: Spectrum in the s-channel of the generalized
Veneziano amplitude model of Eq. 1. The leading and daugh-
ter Regge trajectories are marked by thin solid lines and res-
onances by dots at integer values of spin (l). The dashed
and dotted thick lines illustrate resonance contributes to in-
dividual amplitudes, A2,1 and A4,3, respectively. All (infinite
number) of resonances on and to the right of the dashed line
contribute to A2,1, while resonances on and to the right of the
dotted line contribute to A4,3.

leading trajectory and from all subsequent daughter tra-
jectories. The amplitudes A

n,2 have poles originating
from the the 1st daughter and all subsequent daughters,
A

n,3 from the 2nd and all higher daughters, etc. Thus we
can use m to label Regge trajectories and define,

↵(m)(s) ⌘ ↵(s)� (m� 1) (6)

so that ↵(1)(s) ⌘ ↵(s) corresponds to the leading trajec-
tory, ↵(2) the 1st daughter and so on. The spectrum is
illustrated in Fig. 4. For fixed-t, the asymptotic behavior
of A

n,m

(s, t) at large-s reflects presence of resonances in
the crossed channel. Using Stirling’s formula one finds,

A
n,m

(s ! 1, t) / 1

s
�(n� ↵

t

)s↵
(m)(t) (7)

For large-s the tensor factor in Eq. 1 is proportional to s
and the full amplitude has the expected Regge limit,

A(s, t, u) / s↵(t) (8)

arising from the leading, m = 1 trajectory. The signature
factor will be discussed later.

III. REMOVAL OF POLES

As described in the preceding section, an amplitude
A

n,m

with fixed n and m contains an infinite number of
poles in a two-body channel it describes. Since produc-
tion of resonances is process dependent it is necessary to

find a generalization of the amplitude that allows for the
residues to be process dependent. One possibility is to
use a linear combination

A
n,m

(s, t) ! A(s, t) =
X

n�1,nm1

c
n,m

A
n,m

(s, t) (9)

The coe�cients c
n,m

need to be chosen in such a way
that A’s only couples to resonances that contribute to
the process in question. For example, in the case of an
isoscalar boson strongly coupled to three pions, isospin
conservation demands each pair of pions be produced in
isospin-1. Bose statistics then eliminates all spin-even
resonances in s t and u channels of this reaction.
One way to proceed is to construct linear combinations

of amplitudes A
n,m

that eliminate all, but selected par-
tial waves and then take linear combinations of partial
waves. Alternatively one can attempt data analysis with
a finite number of linear combinations of the A

n,m

’s and
let the fit to data determine coe�cients c

n,m

[? ]. We
find the former more appealing for several reasons. First
of all, when studying resonance properties one is forced
to work with partial waves. Proper description of reso-
nances, however, requires that unitarity is satisfied and
Regge trajectories are non-linear, while the Veneziano
model forces Regge trajectories to be real and linear.
Even though there are extensions of the Veneziano model
allowing for non-linear trajectories, implementation of
unitarity is much simpler at the level of partial waves.
We therefore need to be able to isolate partial waves.
Using the Veneziano amplitudes as building blocks, how-
ever, we will be able match the low-energy behavior of
partial waves with the asymptotic high-energy limit de-
termined by Regge poles. This is important as it provides
a constraint on data analysis that extends beyond what
resonances alone can fix.
Since each A

n,n

amplitude contains an infinite number
of poles, in order to cancel all, but a finite number of
poles an infinite number of coe�cients c

n,m

’s in Eq. 9
must be non vanishing. It is not di�cult to find a rela-
tion between the coe�cients, which decouples all, but a
finite number of poles. Consider, for example, keeping
only the pole at ↵(s) = 1 i.e. at s = s1. This pole is
only present in the amplitude A1,1 since amplitudes with
n > 1 have the lowest pole at s

n

> s1. There is only
one amplitude A1,m = A1,1 so a single coe�cient c1,1 de-
termines coupling to the pole at s = s1. The amplitude
A1,1, however, also has poles at higher masses located
at ↵

s

= 2, 3, · · · with residues that are polynomials in
t of the order of 1, 2, · · · , respectively. If we only want
to keep the pole at ↵(s) = 1, these higher mass poles
of A1,1 have to be canceled by similar poles present in
amplitudes with n > 1.
The pole in A1,1 at ↵

s

= 2 can only by canceled by the
same pole in the two amplitudes A2,m, m = 1, 2 since for
n > 2 no other A

n,m

has this pole. The amplitudes A2,1

and A2,2 are polynomials in t of the order of O(1) and
O(0) respectively. We can therefore uniquely determine
two coe�cients, c2,1 and c2,2 in terms of c1,1 so that the

s

Re α(s)

Re α(s) = a + b s

ρ(770

ρ(1450)

ρ(1570

ρ3(1690

ρ 

ρ3(1990)

ρ 

ρ3 (2250)

ρ5 (2350)

M = ✏µ⌫↵�p
µ
1p

⌫
2p

↵
3 ✏

�A(s, t, u) A =
X

n,m

cn,m


�(n� ↵(s))�(n� ↵(t))

�(n+m� ↵(s)� ↵(t))
+ (s, u) + (t, u)

�

Need flexibility in low partial wave 
the get resonance widths right 

3

first order polynomial in t at the s = s2 pole of A1,1

matches the polynomial in t at the same pole of A2,1 and
A2,2 to produce a vanishing residue. Similarly, at the
↵
s

= 3 pole of A1,1, the residue is an O(2) polynomial
in t. This pole is present in A2,1 and A2,2 with residues
O(2) and O(1) polynomials, respectively, and it s also
present in A3, 1, A3,2 and A3,3 with residues of the order
of O(2), O(1) and O(0), respectively. With c2,1 and c2,2
already fixed, c3,1, c3,2 and c3,3 are now uniquely deter-
mined by c1,1 and by the requirement that the residue
of the ↵

s

= 3 pole, which is an O(2) polynomial in t,
vanishes. Continuing in this way all poles in s satisfying
↵(s) > 1 can be decoupled. Specifically we find

c
n,1 =

c1,1
�(n)

, c
n,2 = � c1,1

�(n� 1)
, c

n,m

= 0 for m > 2,

(10)
so that

A1(s, t) = c1,1
2� ↵

s

� ↵
t

(1� ↵
s

)(1� ↵
t

)
. (11)

This simple result could have been anticipated since
A(s, t) is symmetric in s and t and completely deter-
mined by the poles. It is worth noting, however, that
an infinite sum of the A

n,m

’s resulted in an amplitude
that has fixed poles in s and t and not Regge poles. We
will return to this point in the following subsection. The
procedure can be generalized to produce amplitudes with
isolated poles at any higher, integer value of ↵

s

and ↵
t

.
For example, to construct an amplitude with a single pole
in s at ↵(s) = 3, one starts with the three amplitudes
A3,m, m = 1, 2, 3 and determines the coe�cients c

n,m

for
n > 3 in terms of c3,1, c3,2 and c3,3 that remove all poles
at ↵(s) > 3. Since the residue of the ↵(s) = 3 pole is
a polynomial of O(2) in t having three parameters c3,m,
m = 1, 2, 3 determining the amplitude A(s, t) enables
to decompose the residue in terms of an arbitrary linear
combination of partial waves with l = 0, 1, 2. We note,
however, that once A is used in place of A

n,m

in the ex-
pression for the full amplitude in Eq. 1 the ↵(s) = 3 pole
will represent (narrow) resonances with spin increased by
one unit, i.e l = 1, 2, 3. The coe�cients c3,m, m = 1, 2, 3
can be therefore be chosen to decouple the l = 2 isobars
in the decay of an iso-scalar vector meson to three pions.
The amplitude with the ↵ = 3 poles is then given by

A3(s, t) = a3,0
(6� ↵

s

� ↵
t

)(a3,1 � ↵
s

� ↵
t

)(a3,2 � ↵
s

� ↵
t

)

(3� ↵
s

)(3� ↵
t

)
(12)

where the a’s are linear combinations of the c3.m’s. The
first factor in the numerator guarantees that A does not
have the double pole at ↵

s

= ↵
t

= 3. It is followed by
a product of two monomials in ↵

s

+ ↵
t

that all together
generate O(2) polynomial in s or t at the pole of ↵

t

= 3
or ↵

s

= 3 respectively.

A. Regge poles

After all but a finite number of poles have been re-
moved from, say the t-channel the resulting amplitude
at large values of the cross-channel energy, s, behaves as
sJ where J is the highest spin reached at poles in ↵

s

.
For example, for the amplitude in Eqs. 11, 12 J = 0 and
J = 2, respectively. The expected asymptotic behavior,
however, is s↵(t)�1 (cf. Eqs. 7,8). The Regge behavior
can only emerge from an infinite number of poles, there-
fore we need to modify the procedure outlined above and
allow for infinite number of poles to be present in A.
Since the location of the poles increases with energy, the
e↵ect of poles, located at n > N is small on amplitudes
for s << O(N). For example, with c’s given by Eq. 10
and the sum over n truncated at n = N we find that
instead of the amplitude with a single pole at ↵ = 1 we
obtain

A1(s, t;N) = c1,1
2� ↵

s

� ↵
t

(1� ↵
s

)(1� ↵
t

)

⇥ �(N + 1� ↵
s

)�(N + 1� ↵
t

)

�(N)�(N + 2� ↵
s

� ↵
t

)
(13)

which for s >> N has the desired Regge behavior /
s↵(t)�1. As expected, the amplitude is free from poles
in the range 1 < ↵(s)  N , and the same holds for the
t-channel. Furthermore, for N large enough i.e. N >>
M2 the contribution of the undesired, high-energy poles
at ↵ > N on the low-energy region, ↵ < M2 is power
suppressed

A1(s, t < M2;N) = c1,1
2� ↵

s

� ↵
t

(1� ↵
s

)(1� ↵
t

)


1 +O

✓
M2

N

◆�

(14)
and can be interpreted as background. The generaliza-
tion of Eq. 13 to a pole at ↵ = n is

A
n

(s, t;N) = a
n,0

2n� ↵
s

� ↵
t

(n� ↵
s

)(n� ↵
t

)

⇥
⇧n�1

i=1 (an,i � ↵
s

� ↵
t

)
⇤

⇥ �(N + 1� ↵
s

)�(N + 1� ↵
t

)

�(N + 1� n)�(N + n+ 1� ↵
s

� ↵
t

)

(15)

In the following we this set of amplitudes to describe J 
and  0, three pion decays.

IV. APPLICATION TO VECTOR
CHARMONIUM DECAYS

Decays of vector charmonia have been studied by
MARKII, CLEO, BaBar and BES, and more recently by
BESIII. One of the original motivation was the perturba-
tive QCD prediction. The QCD calculation is based on
factorization of the cc̄ wave function from the perturba-
tive production of light quark pairs. The predicted ratio
of branching ratios,  0 ! ⇢/⇡/J/ ! ⇢/⇡ of 12% ap-
pears to be significantly larger then measurements, which
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