Meson Spectroscopy (in the context of) Amplitude Analysis

Adam Szczepaniak IU/JLab

QCD predicts matter is made from confined (non-existing) quarks and gluons with $>95 \%$ mass coming from interactions!
this is a highly nontrivial environment :
small world ($10^{-15} \mathrm{~m}$) of fast ($\mathrm{v} \sim \mathrm{c}$) particles exerting ~1T forces !!!

dibaryon

pentaquark

dimeson molecule

glueball

$q \bar{q} g$ hybrid

What are the constituents of hadrons?

How do resonances appear in the data (experiment/lattice)?

Amplitude Analysis

JPAC

- Started in the Fall of 2013 to support the extraction of physics results from analysis of experimental data from JLab12 and other accelerator laboratories.
- Work is on theoretical, phenomenological and data analysis tools in close collaboration with theorists and experimentalists worldwide.
- Contribute to education of new generation of practitioners in physics of strong interactions.

Amplitude analysis in hadron spectroscopy

- Resonances appear as poles in partial wave amplitudes.

- Amplitudes are agnostic as to the nature of these poles (other "dials" needed to discriminate)
- We do not know (aka. from "exact calculations") where these poles are.
- There can be other singularities producing "bumps" in the physical region, or resonances can produce "dips"
- We put these "by hand" and have data (and lattice) to discriminate between hypotheses.

Resonance input

- PDG
- Quark Models
- Lattice
- Regge theory
- Other

$$
C_{\mathrm{K}^{*} N \mathrm{~A}^{*}}=-\frac{\mathrm{i} G_{1}}{M_{V}} \bar{\Lambda}^{* \mu} \gamma^{\nu} G_{\mu \nu} N-\frac{G_{2}}{M_{V}^{2}} \bar{\Lambda}^{* \nu} G_{\mu \nu} \partial^{\nu} N+
$$

S -matrix constraints

"All constraints are equal but some are more equal the another"

In constructing amplitudes, one must make a judgment which ones are the most important.

- Conservation of probability: appearances of real axis singularities, bound state vs resonance, Regge phenomena, absence of overlapping singularities,...
- Causality/Lorentz symmetry: crossing, analyticity, dualities, barrier factors, kinematical singularities, polynomial bounds,...
- QCD: appearance of bound states/ resonances, low energy limits, exchange degeneracy, ...

$$
A(s, t)=\sum_{l} A_{l}(s) P_{l}\left(z_{s}\right)
$$

Analyticity

$$
A_{l}(s)=\lim _{\epsilon \rightarrow 0} A_{l}(s+i \epsilon)
$$

Crossing

Anatomy of Amplitudes
(2-to-2)

\ldots but PWA used the most (?) $\quad A(s, t)=\sum_{l}^{\infty} A_{l}(s) P_{l}\left(z_{s}\right)$

There are various representations

- Mandelstam
- Khuri
- Sommerfeld-Watson
- DAMA
- PWA
- Partial waves have complicated analytical properties; truncation violates crossing symmetry, Mandelstam analyticity, asymptotic behavior

Isobar Model $a_{l}(s) \neq A_{l}(s)$

$$
A(s, t)=\sum_{l}^{L_{\max }<\infty} a_{l}(s) P_{l}\left(z_{s}\right)+(s \rightarrow t)+(s \rightarrow u)
$$

Isobar Model

- Focuses on individual partial waves
- Dynamical consequences of crossing are missing

Other representations of $\mathbf{A}(\mathbf{s}, \mathrm{t})$

- Emphasize duality between resonances and reggeons
- Individual partial waves are "averaged"

What happens when we try to contract an analytical amplitude from a partial wave (this is important!)

$$
A(s, t, u) \leftarrow A_{L}(s) P_{L}\left(z_{s}\right)
$$

$$
q_{i j}=\frac{\lambda^{1 / 2}\left(s, m_{i}^{2}, m_{j}^{2}\right)}{2 \sqrt{s}}
$$

threshold factors $(\lambda)=>$ from "forces" e.g. cross channel process
(One needs to be careful and not associate divergencies $\sim q^{2 L}$ with subtractions e.g. in N/D equations)

$$
\left(\mathrm{q}_{12}\right)^{\mathrm{L}}>\mathrm{A}_{\mathbf{l}}(\mathrm{s}) \begin{cases}3 & A(s, t, u)=\frac{g_{12} g_{34}}{m_{R}^{2}-s}\left(q_{12} q_{34}\right)^{L} P_{L}\left(z_{s}\right) \\ \left(\mathrm{q}_{34}\right)^{\mathrm{L}} \\ 4 & \Delta=\left(m_{1}^{2}-m_{2}^{2}\right)\left(m_{3}^{2}-m_{4}^{2}\right) \neq 0\end{cases}
$$

for UU amplitudes there is a singularity at $\mathrm{s}=0$!
$\left(q_{12} q_{34}\right)^{L} P_{L}\left(z_{s}\right)=\left(q_{12} q_{34} z_{s}\right)^{L}+\cdots=f(s, t, u)\left[1+O\left(\frac{\Delta}{s}\right)+O\left(\frac{\Delta}{s}\right)^{2} \cdots\right]$
common solution $g_{12} g_{34} \rightarrow s^{L} g_{12} g_{34}$
but this introduces polynomials (Regge solution based on daughter trajectories)

for external particles with spin crossing (Lorentz transformations) leads to Wigner rotations

There is an "open market" for amplitude framework

L-S amplitudes, Helicity amplitudes, Spinorial amplitudes

Examples:

$$
R_{X}(m)=B_{L_{\Lambda_{b}^{\prime}}^{\prime}}^{\prime}\left(p, p_{0}, d\right)\left(\frac{p}{M_{\Lambda_{b}^{0}}}\right)^{L_{\Lambda_{b}^{0}}^{X}} \mathrm{BW}\left(m \mid M_{0 X}, \Gamma_{0 X}\right) B_{L_{X}}^{\prime}\left(q, q_{0}, d\right)\left(\frac{q}{M_{0 X}}\right)^{L_{X}}
$$

It would be useful to examine such parametrization and determine systematic uncertainties

$$
q_{12}^{L} q_{34}^{L} P_{L}(\cos \theta) \text { analytical function of }(\mathrm{t}, \mathrm{u})[1+\mathrm{O}(1 / \mathrm{s})+. .]
$$

How to handle the $1 / \mathrm{s}$ singularities

Make sure complexities come from physics

Perfecting Isobar Model (light meson decays)

- $\eta \rightarrow 3 \pi$: Isospin violating decay sensitive to the quark mass difference.
- Slow convergence of ChPT (importance of singularities)
$\Gamma_{\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}}=66_{\underline{\mathrm{LO} \mid}}+94_{[\mathrm{NLO}]}+\ldots=296 \perp 16 \mathrm{eV}_{[\mathrm{ExP} \text {. }}$
- Slope parameter in neutral decay, a puzzle for ChPT.
$\left|A_{\eta \rightarrow 3 \pi^{\circ}}\right|^{2} \propto 1+2 \alpha z+\ldots$

Niecknig, Kubis, Schneider'12,
Danilkin et al. JPAC'15,'16
Escribano, Masjuan,Sanz-Cillero'11, Kubis \& Schneider'12, Perotti, Niblaeus, Leupold'15
G. Colangelo, et al'16

The Good: requires two body amplitudes only, connection to energy elastic scattering, partial wave expansion
The Bad : Difficult to make systematic improvements (e.g. inelastic channels)

The Ugly : High energy is parametric and "very wrong".

Resonances in peripheral production

- Assess factorization, develop of 2-to-2 reactions, including reggeon - particle scattering.

Regge analysis of meson resonance production

Data collection:

- γ, π, K beams
- $0^{-}, 1^{-}, 2^{+}$peripheral meson production

Mathieu et al. PRD 92, 074013

$$
\Sigma=\frac{|\omega+\rho|^{2}-|h+b|^{2}}{|\omega+\rho|^{2}+|h+b|^{2}}
$$

axial-vector exchanges strength decreases with energy
Universal data format

$$
\gamma p \rightarrow \eta p
$$

J. Nys, V. Mathieu, at this meeting

Resonances in peripheral production (cont.)

- Develop analytical constraints to relate resonance production with high energy (Regge) dynamics (e.g. FESR's)
- Understand how parametrize the "thick lines" : Dynamics (isobars, K-matrices, left hand cuts, right hand cuts, resonance "seeds",
- Understand how to parametrize the "thin lines" : Kinematics (kinematical singularities, helicity, L-S, covariant amplitudes, ...)

Eta-Pi @COMPASS

Eta-Pi @COMPASS

Precise determination of resonance content: (complex plane structure)
A. Jackura, at this meeting

Pole Extraction - K-matrix vs. CDD poles

- Need reliable parameterizations to extract resonance parameters
- Models must satisfy unitarity conditions
- In addition, resonance pole positions must be on
 unphysical sheets

$$
\begin{array}{cc}
\operatorname{Im} t(s)=\rho(s)|t(s)|^{2} \Longrightarrow t^{-1}(s)=K^{-1}(s)-\frac{s}{\pi} \int_{s_{t h}}^{\infty} d s^{\prime} \frac{\rho\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)} \\
K(s)=\sum_{r} \frac{g_{r}^{2}}{m_{r}^{2}-s}+\sum_{j} \gamma_{j} s^{j} \quad \begin{array}{c}
\text { No obvious constraints } \\
\text { on parameters }
\end{array} \\
K^{-1}(s)=C_{0}-C_{1} s-\sum_{r=1}^{N} \frac{C_{2}^{r}}{C_{3}^{r}-s} \quad \begin{array}{c}
\text { If } C_{1}, C_{2}>0 \text { then NO } \\
\text { poles on first sheet! } \\
\text { (Herglotz function) }
\end{array}
\end{array}
$$

Fit over all t^{\prime} slices

Finite Energy Sum Rules (FESR's) first time to be
Magnitude of the P wave (exotic resonance) at low $\eta \pi$ mass is related by FESR to Regge exchanges at high $\eta \pi$ invariant mass
work in progress

$$
\int^{\Lambda} \operatorname{Im} A_{i}\left(s_{1}, t_{1}, t_{2}\right)=\int_{\Lambda} \operatorname{Im} A_{i}\left(s_{1}, t_{1}, t_{2}\right)
$$

$\operatorname{Im} A(s, t) \neq 0$

$\mathrm{P}_{\mathrm{c}}(4450)$ in J / Ψ photo production

LHCb Collaboration, PRL 115, 072001 (2015)
Fit to data! W from threshold to $\sim 300 \mathrm{GeV}$.

Upper bound for partial decay width!
$\begin{cases}J_{r}=3 / 2 & \Rightarrow 23-30 \% \\ J_{r}=5 / 2 & \Rightarrow 8-17 \%\end{cases}$

Also angular distributions and photocouplings studied.

A.Blin, at this meeting

REMARK ON ENERGY PEAKS IN MESON SYSTEMS
M. Nauenberg A. Pais

If the width
of particle X is not very large we will stay close to the physical region. This almost singular behavior of $A(s)$ for certain physical s causes the peaking effect to which we refer as an (X, Y, Z) peak.

"Peierls mechanism"

Singularities, is all that matters: poles and cuts

Cusps from singularities below threshold Bumps from singularities above threshold

The view from above the heavier threshold

Origin of singularities (exchanges constrained by unitarity)

$\mathbf{A}_{1}(\mathbf{s})$

(branch point)

Case study, $Z_{c}(3900)$

One can test different parametrizations of the amplitude, which correspond to different singularities \rightarrow different natures

Triangle rescattering, logarithmic branching point

Szczepaniak, PLB747, 410-416 Szczepaniak, PLB757, 61-64 Guo et al. PRD92, 071502

(anti)bound state, II/IV sheet pole

Tornqvist, Z.Phys. C61, 525
Swanson, Phys.Rept. 429
Hanhart et al. PRL111, 132003

Compact QCD state, III sheet pole
A.Pilloni at this meeting

Properties:

- Duality: resonances in direct channel dual to reggeons in cross channels and backgrounds are dual to the pomeron
- All resonances are "connected": resonances belong to Regge trajectories (reggeons)
- Asymptotics: determined by Regge poles
- Unitarity: imaginary parts determined by decay thresholds

Veneziano amplitude satisfies all of the above except unitarity

Veneziano amplitude: "compact" expression for the full amplitude

$$
A(s, t)=\frac{\Gamma(-\alpha(s)) \Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))} \quad \alpha(s)=a+b s
$$

resonance/reggeon in $s=m_{12}{ }^{2}$

$\mathrm{A}(\mathrm{s}, \mathrm{t})$ can be written as sum over resonances in ether channel.

$$
A(s, t)=\sum_{k} \frac{\beta_{k}(t)}{k-\alpha(s)}=\sum_{k} \frac{\beta_{k}(s)}{k-\alpha(t)}
$$

Note: in V-model resonance couplings, β, are fixed!

$$
\beta_{k}(t) \propto(1+\alpha(t))(2+\alpha(t)) \cdots(k+\alpha(t))
$$

Resonances couplings, β, should depend on final state particles: a linear superposition of Veneziano amplitudes can be used to suppress or enhance individual resonances or trajectories

FIG. 7: (a) Binned scatter diagram of $\cos \theta_{\pi_{3}}$ vs $m\left(\pi_{1} \pi_{2}\right)$. (b), (c) $\pi \pi$ nass projection in the \mid ous $\theta_{\pi} \mid<0.2$ region for all the three $\pi \pi$ charge combinations. The horizontal lines in (a) indicate the $\cos \theta_{\pi}$ selection. The dashed line in (b) is the result from the fit with only the $\rho(770) \pi$ amplitude. The fit in (b) uses the isobar model and the shaded histogram shows the background distribution estimater from the .J/p sidebands. The fit in (c) uses the Veneziano model.
A.Palano (BaBar)
(also S.Fegan (BESIII))

http://www.indiana.edu/~ssrt/

2017 International Summer Workshop on Reaction Theory June 12-22, 2017, Bloomington, Indiana, USA

HOME LECTLRERS PROGRAM APPLICATION VENUE ACCOMMODATION VISA INFORMATION TRANSPORTATION TOCAI.INFORMATION PARTICIPANTS RFSOURCES CONTACT

ABOUT THE WORKSHOP

The 2017 International Summer Workshop on Reaction Theory is dedicated to theory and phenomenology of scattering theory and its application to data analysis of modern experiments in strong interactions physics. As a new frontier in particle and nuclear physics has opened up with advances in experimental, theoretical and computational teelmiques there is new demand for a qualitatively new level of sophistication in data analysis never before achieved. These require decp knowledge of the methods in relativistic scattering theory. For at least two decades scattering theory has essentially disappeared from the physics curriculum and generations of physicists have been educated without this basic knowledge. Few have working experience with topics related to the analysis of relativistic reactions that involve aspects of Regge phenomenology, crossing relations and duality, analytic continuations, dispersion relations, etc., and the phenomenological application of all these concepts.

Future Directions in Spectroscopy Analysis II Mexico City November 6-10, 2017

http://epistemia.nucleares.unam.mx/web?name=FDSA2017

