
1LHCb software week, June 2009

File Records Implemention

Motivation
File records data store
Place, retrieve and match objects
Conclusions

M.Frank CERN/LHCb 2LHCb software week, June 2009

Motivation

Need to store data on a per file bases
together with event data

Typically counters, summary objects, etc.
But only ONCE, not for each event

Only user until now
Saving of luminosity estimates/measurements

Numbers need to survive stripping phase
Luminosity events are stripped off

Other use cases until today
…partially contradicting and loosely specified except:
“I want to save…”

M.Frank CERN/LHCb 3LHCb software week, June 2009

Expected Behaviour

Object access like any other data service:
Handle any DataObject
Known access mechanism to place and retrieve objects

To be saved with event data in the same file
Allow to recursively propagate
history counters from input files

Mini-DST may contain records from
Brunel, Brunel includes records from Boole,
Boole from Gauss…

Important notice
Only works for files with direct object access (POOL)

M.Frank CERN/LHCb 4LHCb software week, June 2009

FileRecord Store Layout

Tree structure
like any DataSvc:

Event data
Detector data
N-tuples,…

Contains
DataObject(s) or
subclasses

M.Frank CERN/LHCb 5LHCb software week, June 2009

FileRecord Store Layout

Root entry
Current record entries

History record from
input file

name is FID
now: input file
entries + history

Another input file

Input record of
inner input file

entries + history
and another input file

M.Frank CERN/LHCb 6LHCb software week, June 2009

How to add Entities

Like other data store items
Need to retrieve reference to file records service

sc=service("FileRecordDataSvc",m_recordsSvc)

Then place object in TES
Before services get finalized
Use either Algorithm or use “stop” transition!

GaudiAlg: get<T>(…), put<T>(…)
But use the entries where a service must be provided
TYPE* getDet(IDataProviderSvc* svc,

const string& location) const

Setup options write content
See GaudiExamples/POOLIO/Write

M.Frank CERN/LHCb 7LHCb software week, June 2009

Match Entities when Reading

Using incidents
Whenever a POOL file is opened an incident is generated

Incident type: “NEW_FILE_RECORD”
source: FID of new file

Algorithm can implement IIncidentHandler interface
and handle the incident. Example code snip let:

void ReadAlg::handle(const Incident& inc) {
if (inc.type() == “NEW_FILE_RECORD”) {

string fid = inc.source(); // The source contains FID
SmartDataPtr<Counter> cnt(m_recordSvc,fid+"/EvtCount");
log << "File record: " << n << "=" << cnt->value() << endmsg;
…

M.Frank CERN/LHCb 8LHCb software week, June 2009

Match Entities when Reading

Using the persistency triangle
Each dataobject from file has a unique address
This address contains FID
=> string fid = dataobject->registry()->address()->par()[0]

This is the fid to match when scanning input files in the
file records transient store
Helper can be provided if this is main access pattern

Example: GaudiExamples/POOLIO/Read

DataObject
IRegistry

IOpaqueAddress

1

1 1

1

M.Frank CERN/LHCb 9LHCb software week, June 2009

Possible Extensions

Helper to access directory of input file
given an object in the event data store
Automatic actions

Combining automatically entities (e.g. adding)
Easy said…
Generic implementation depends largely on the
object model.
Cannot be done for “arbitrary” objects

…

M.Frank CERN/LHCb 10LHCb software week, June 2009

Conclusions

File records can be saved with event data
Implementation supporting basic features has
been done
Any DataObject can be stored in records store
More exact use cases, “event model equivalent”
do not exist and need to be specified
Basic functionality is present.
Extensions can be provided depending on usage

	File Records Implemention
	Motivation
	Expected Behaviour
	FileRecord Store Layout
	FileRecord Store Layout
	How to add Entities
	Match Entities when Reading
	Match Entities when Reading
	Possible Extensions
	Conclusions

