
Exercise 1 : the linux page cache

Sébastien Ponce

June 6, 2017

1 Foreword

All the exercises of the “Strategies and technologies for efficient I/O” track are build on the
same ideas :

• they provide working code and you only have to use and look around. No programming
skills required :-)

• they are mostly written in python, as python code is more readable than C/C++ for non
experts. And they are as simple as possible so that the code is very readable

• their only purpose is to demonstrate something. They are in no way supposed to be
efficient or well structured. DO NOT REUSE that code in real software ! It is bad,
inefficient and more importantly very unsecure.

• they are designed to mostly work locally (yes, even the networking ones) on a crappy old
machine, or from a virtual machine on a laptop. So they can run anywhere, including
directly on your laptops. But take care that you may have to install some tools then.

The exercises are using the linux command line and the many tools provided in a standard
linux distribution. For the ones you do not know, please open the man page and read at least
the description. Also feel free to ask any questions.

2 Goals of the exercise

• Exercise the linux page cache

• See effect of read ahead

• Use memory mapped file

3 Setup

3.1 Basics

• open a terminal

• go to /data, download and untar the exercises

cd /data

wget http://cern.ch/sponce/CSC/exercises.tgz

tar xvzf exercises.tgz

1



• go to exercise1

cd exercises/exercise1

3.2 Create a data file

• Use the generateTemperatureFile.py in the tools directory to create a data file. Use 10000
captors and 100 points for a 4MB file.

python ../tools/generateTemperatureFile.py 10000 100 datafile

• Be patient, it should take around 2mn

• check that the file is in the kernel cache

linux-fincore datafile

4 Understanding the page cache

4.1 Efficient access and cache usage

• Have a look at the code of countOverheated.py

– see that there is a single seek and a single read for the main part

– note the small read of 4 bytes at the start of the file for nbCaptors

• Drop the datafile from the page cache

linux-fadvise datafile POSIX_FADV_DONTNEED

• check the cache

linux-fincore datafile

• start iostat in another shell in order to monitor I/O. “-d 2” will display the amount
of I/O every 2 seconds. “-p <device>” specifies the device. You can find it from the
“mount” command, looking at the data mountpoint if you not are using the standard
virtual machine.

iostat -d 2 -p /dev/mapper/fedora-data

• run the code to find overheated devices at a given time

python countOverheated.py datafile 40 45

• check the amount of I/O done from disk and the status of the cache, including the list of
cached pages. Remember pages are 4 KiB

linux-fincore datafile

linux-fincore -p datafile

2



Amount of I/O

Percentage of file in cache

Pages in cache

• compute what was the minimal set of pages that needed to be in the cache

Minimal pages needed

Associated cached size

• draw some conclusions on the behavior of the cache, in particular concerning read-ahead

• keep iostat running and run the code again for the next point in time

python countOverheated.py datafile 41 45

• see in iostat output that nothing was read from disk

• see with that the cache did not change

linux-fincore -p datafile

4.2 scattered reads

• Have a look at the code of plotCaptor.py

– see the number of small reads of size 4

– note the small read of 4 bytes at the start of the file for nbCaptors

• Drop the datafile from the page cache

linux-fadvise datafile POSIX_FADV_DONTNEED

• check the cache

linux-fincore datafile

• start iostat in another shell in order to monitor I/O

iostat -d 2 -p /dev/mapper/fedora-data

• run the plotCaptor program for one captor

python plotCaptor.py datafile 40

• check the amount of I/O done from disk and the status of the cache, including the list of
cached pages

3



linux-fincore datafile

linux-fincore -p datafile

Amount of I/O

I/O duration

Percentage of file in cache

Pages in cache

• note that behavior of the page cache : it “understood” that we were doing scattered
reads. We have still read 10% if the file for getting 0.01% of the data

• try again with 2 captors not close to each other. Do not forget to clean up the cache

linux-fadvise datafile POSIX_FADV_DONTNEED

python plotCaptor.py datafile 40,2040

linux-fincore datafile

linux-fincore -p datafile

Amount of I/O

I/O duration

Percentage of file in cache

Pages in cache

• no big surprise here : 20% of the file was read

• try again with 3 captors in 3 contiguous pages. Again do not forget to clean up the cache

linux-fadvise datafile POSIX_FADV_DONTNEED

python plotCaptor.py datafile 40,1040,2040

linux-fincore datafile

linux-fincore -p datafile

Amount of I/O

I/O duration

Percentage of file in cache

Pages in cache

4



• see that we’ve read 66% of the file rather that 30%. Obviously the read-ahead has been
activated by the fact that we read contiguous pages.

• also see that we did more user time (even less actually) although we’ve read more data.
Reading continuous blocks without seeking is efficient.

5 Mapped files

The goal here is to read big portions of a big file and see the improvement brought by mapped
memory. We will use the temperature file but extend it to over 1GB by adding zeroes and we
will count the number of captors exceeding a certain temperature.

5.1 Prepare a big data file

• copy datafile into bigdatafile and extend it with zeroes using dd

cp datafile bigdatafile

dd if=/dev/zero of=bigdatafile bs=40000 count=1 seek=40000 conv=notrunc

• the file still has 10000 captors, but has now 40000 points (and a bit more), out of which
only the first 100 are non zero

• note by the way how the file system optimizes such sparse file

ls -lh bigdatafile

du -h bigdatafile

du -h --apparent-size bigdatafile

File size from ls

File size from du

Apparent file size from du

5.2 Reading the file the C way

• have a look at the code in countOverHeated.c. This is C code but should still be quite
readable. See how the file is read into a local buffer that is then used for counting the
number of overheated captors

• make sure that bigdatafile is not in the page cache

linux-fadvise bigdatafile POSIX_FADV_DONTNEED

linux-fincore bigdatafile

• compile countOverHeated - you will also compile the Mapped version actually

make

• run countOverHeated for 10000 points and see how much time it takes

5



./countOverheated bigdatafile 4-10004 45

• check that bigdatafile is now partially in the linux page cache. Check that all what we
read is there (compute how much we read)

linux-fincore bigdatafile

Percentage of file in cache

Expected size in cache

Total time spent

• run again the same command and see the improvement due to the page cache. Deduce
the amount of time it took to fill the cache versus how much the memory allocation +
memory copy took

./countOverheated bigdatafile 4-10004 45

New total time spent

Time for filling the cache

Time for allocation/copy

5.3 Memory mapping the file in C

• have a look at the code in countOverHeatedMapped.c. See how the file is mapped into
memory and never explicitely read.

• make sure that bigdatafile is not in the page cache

linux-fadvise bigdatafile POSIX_FADV_DONTNEED

linux-fincore bigdatafile

• run the mapped version a first time with the same 10000 points and see how much time
it takes

./countOverheatedMapped bigdatafile 4-10004 45

Total time spent

• see the difference with the non mapped version

6



Gain

• check that bigdatafile is now partially in the linux page cache. Check that all what we
use is there

linux-fincore bigdatafile

• run again countOverheatedMapped over the same captors

./countOverheatedMapped bigdatafile 4-10004 45

New total time spent

• see the improvement due to the page cache

Gain

5.4 Reading the file in python (optional)

• go back to the code of countOverheated.py, the one we’ve used at the beginning. It’s the
python version of the countOverheated.c file. No memory mapping code there

• cleanup cache for bigdatafile

linux-fadvise bigdatafile POSIX_FADV_DONTNEED

linux-fincore bigdatafile

• run the python version and check timing

python countOverheated.py bigdatafile 4-10004 45

Total time spent

Time spent in extraction

• see how python is different from C at computing if you do not take care !

• also see that the timing for extraction is close to the non mapped C case

• check page cache status for bigdatafile

linux-fincore bigdatafile

7



Percentage of file in cache

• run the python version again and check benefit of the page cache

python countOverheated.py bigdatafile 4-10004 45

New total time spent

Gain

• you should see again performance close to C for data extraction (if not slightly better)

• checking the python code more carefully, you should actually be surprised. Indeed, we
have an extra data copy that C does not have to do : creating a python string from the
C array of bytes.

• let’s understand why we do not seem to pay this copy : run again the python version
with strace, looking for file handling calls

strace -e open,read,write,close,mmap,munmap -s 0 \

python countOverheated.py bigdatafile 4-10004 45

• the output is big, but most of it is python starting, you only have to look at the last 20
lines or so. Identify the ’open(“bigdatafile”, O RDONLY)’ entry and read on.

• what do you notice about the file access ? mmap is used ! So we do pay the copy to the
python string. But we do not pay the copy to memory as we actually use mmap.

• we can improve and avoid the copy to python by using the mmap module of python.
Look at the code of countOverheatedMapped.py. This time, we map the memory directly
to python.

• run countOverheatedMapped.py and check benefit compared to the initial version

python countOverheatedMapped.py bigdatafile 4-10004 45

New total time spent

Gain

8


	Foreword
	Goals of the exercise
	Setup
	Basics
	Create a data file

	Understanding the page cache
	Efficient access and cache usage
	scattered reads

	Mapped files
	Prepare a big data file
	Reading the file the C way
	Memory mapping the file in C
	Reading the file in python (optional)


	Amount of I/O: 
	Percentage of file in cache: 
	Pages in cache: 
	Minimal pages needed: 
	Associated cached size: 
	Amount of I/O: 
	I/O duration: 
	Percentage of file in cache: 
	Pages in cache: 
	Amount of I/O: 
	I/O duration: 
	Percentage of file in cache: 
	Pages in cache: 
	Amount of I/O: 
	I/O duration: 
	Percentage of file in cache: 
	Pages in cache: 
	File size from ls: 
	File size from du: 
	Apparent file size from du: 
	Percentage of file in cache: 
	Expected size in cache: 
	Total time spent: 
	New total time spent: 
	Time for filling the cache: 
	Time for allocation/copy: 
	Total time spent: 
	Gain: 
	New total time spent: 
	Gain: 
	Total time spent: 
	Time spent in extraction: 
	Percentage of file in cache: 
	New total time spent: 
	Gain: 
	New total time spent: 
	Gain: 


