

quarkdb
A highly-available backend for the EOS namespace

2/2/2017 EOS workshop 2017 2

Georgios Bitzes

The motivation for quarkdb
• The current solution for the EOS namespace

stores all metadata in-memory

• This method has reached its scalability limits
 Production instances requiring special machines

with hundreds of gigabytes of RAM
 All metadata must be loaded into memory on

boot, often taking +1h

2/2/2017 EOS workshop 2017 3

Project goals
• A database able to hold large amounts of

data
 in the order of TBs

• Redis protocol with a small subset of redis
commands supported
 mostly string, hash, and set operations

• High availability

2/2/2017 EOS workshop 2017 4

quarkdb design
• rocksdb as the storage backend, a key-

value store by Facebook

• Translation of redis commands into rocksdb
key-value transactions

• Raft consensus algorithm for replication and
high-availability

2/2/2017 EOS workshop 2017 5

rocksdb
• Persistent key-value store
 log-structured merge tree in the back

• Embeddable: link to your own binary, and
you have a database

• Open-source with a permissive license
(BSD), actively developed by Facebook

• Designed for and proven to hold datasets
larger than RAM size

• Optimized specifically for SSD storage

2/2/2017 EOS workshop 2017 6

Redis command translation

2/2/2017 EOS workshop 2017 7

HSET myhash field contents

Redis command

Key descriptor: “dmyhash” =>
“This key is a hash, current size is 5”

rocksdb

“bmyhash#field” => “contents”

SADD myset element

Key descriptor: “dmyset” =>
“This key is a set, current size is 8”

“cmyset#element” => “1”

Standalone mode overview

2/2/2017 EOS workshop 2017 8

The need for high-availability
• eos has become critical for data at CERN

• MGM loss means long downtime, great
disruption

• Ideally:
 Transparent failover, no service interruption
 No single point of failure, now possible since

database is separate from MGM

2/2/2017 EOS workshop 2017 9

Replication
• Need to cluster multiple replicated nodes for

fault tolerance
• Very tricky to ensure safety and consistency

in a distributed database
 Nodes could fail in the middle of receiving

updates
 Network partitions: different nodes might have

conflicting views
• A solution to this problem already exists;

distributed consensus

2/2/2017 EOS workshop 2017 10

Distributed consensus
• A way to have multiple nodes agree on

something

• Several algorithms and methods exist

• We picked the Raft consensus algorithm –
offers strong consistency semantics

2/2/2017 EOS workshop 2017 11

Master – slave replication
One of the nodes is elected to become the
master (or leader)

2/2/2017 EOS workshop 2017 12

Raft consensus algorithm

Node
1

Node
2

Node
3

Client

Change filesize of
/eos/dir/file

ok

Client says:
Change filesize

/eos/dir/file

Master

• The master sends regular heartbeats to all
slaves

• If a slave stops receiving heartbeats, it
assumes master failure and triggers an
election

• An election is won if a node receives positive
votes from at least a majority of the cluster

Master election

2/2/2017 EOS workshop 2017 13

Raft consensus algorithm

Heartbeats

2/2/2017 EOS workshop 2017 14

Raft consensus algorithm

Slave

Haven’t heard from
the master for

2 sec… Something
is wrong

A successful election: 2 out of 3 nodes agree
on the new master

Candidate

Master election (2)

2/2/2017 EOS workshop 2017 15

Raft consensus algorithm

Slave

Vote for
me for
term 20

Vote granted

Vote for
me for
term 20

Used to be master
for term 19

• One of the slaves goes offline for 10 minutes
– how to bring it up-to-date?

• Record all writes into an indexed log, and
replicate it

Log replication

2/2/2017 EOS workshop 2017 16

Raft consensus algorithm

Index Term Contents
0 1 SET food pizza
1 1 SET language c++
2 1 SET food pickles
3 5 SET answer_to_life 42
… ….

Log replication (2)

2/2/2017 EOS workshop 2017 17

Raft consensus algorithm

SlaveMaster

Hey, are you there?

Yeah, my last index is #149

You’re missing entries 150 to 203..
Here they are…

quarkdb: high-level overview

2/2/2017 EOS workshop 2017 18

Consistency guarantees
• quarkdb is a strongly consistent database

(CP from CAP theorem)

• Linearizability: after a client receives an
ACK to a write, all future reads (from any
client) are guaranteed to return that value, or
a future one.
• even if the master crashes right after the ACK

2/2/2017 EOS workshop 2017 19

What’s been done so far
• Implemented the raft algorithm – replication,

master election
• Distributed mode is already fully functional
• Membership changes – ability to add /

remove nodes on-the-fly
• Trimming of the raft journal, so it doesn’t

grow indefinitely
• Automatic “resilvering” – bringing a node

that just joined the cluster up-to-date

2/2/2017 EOS workshop 2017 20

Stability and testing
• Extensive testing: unit, functional
 Running the test suite stresses all quarkdb

components and capabilities, including:
 redis protocol parsing
 master election machinery
 Journal entry replication
 Resolving conflicting journal entries
 client request servicing
 Pipelined writes over multiple connections
 Journal trimming
 Membership updates

2/2/2017 EOS workshop 2017 21

Thanks
• https://gitlab.cern.ch/eos/quarkdb
• Current status: ~8k lines of code
 including tests, tools
 excluding dependencies

• Raft paper
 https://raft.github.io/raft.pdf

• Raft visualization
 https://thesecretlivesofdata.com/raft/

Questions, comments?

2/2/2017 EOS workshop 2017 22

https://gitlab.cern.ch/eos/quarkdb
https://raft.github.io/raft.pdf
https://thesecretlivesofdata.com/raft/

	Slide Number 1
	quarkdb�A highly-available backend for the EOS namespace
	The motivation for quarkdb
	Project goals
	quarkdb design
	rocksdb
	Redis command translation
	Standalone mode overview
	The need for high-availability
	Replication
	Distributed consensus
	Master – slave replication
	Master election
	Heartbeats
	Master election (2)
	Log replication
	Log replication (2)
	quarkdb: high-level overview
	Consistency guarantees
	What’s been done so far
	Stability and testing
	Thanks

