

Magnetic measurements on MBHSP105

Lucio Fiscarelli on behalf of TE/MSC/MM

Second debriefing meeting on the cold tests of the 11T dipole model MBHSP105 01 December 2016 CERN

Outline

- Coils, models and conductors
- Measurement list
- Measurement systems
- Measurement results
 - Ambient temperature
 - TF, field quality, and comparison with other models
 - Cryogenic temperature
 - TF and saturation, b3 and persistent currents
 - Field quality
 - Comparison with other models
 - Effects of pre-cycle RR, effects of temperature

Conclusions

Coils, models, and conductors

	Magnet	Strand layout	Cu/SC	Coil R at 300 K	Average coil	Min Ic at 4.2 K, 12 T
				mΩ	RRR _{293K/4K}	A
Coil 105	SM101	RRP 108/127	1.22	426	81	
Coil 106	SP102	RRP 108/127	1.22	423	66	466
Coil 107	SP101	RRP 108/127	1.22	426	97	
Coil 108	SP102	RRP 132/169	1.22	407	185	417
Coil 109	SP103	RRP 132/169	1.27	400	131	395
Coil 111	SP103	RRP 132/169	1.27	401	124	395
Coil 112	SP104	RRP 132/169	1.27	403	125	395
Coil 113	SP104	RRP 132/169	1.27	403	115	395
Coil 114	SP105	RRP 150/169	0.98	438	115	415
Coil 115	SP105	RRP 150/169	0.97	438	110	415

Measurement list

- Ambient temperature, central and integral field at ±20 A
 - After collaring (CC)
 - After shell welding (CM)
- Cryogenic temperature, central and integral field up to nominal
 - Standard
 - At 1.9 K
 - Machine simulation cycle after pre-cycling at 50 As⁻¹
 - Stair-step cycle
 - Machine simulation cycle after pre-cycling at 10 As⁻¹
 - Extended
 - At 1.9 K
 - Machine simulation cycle with injection at 3 kA
 - Machine simulation cycle with injection at 4 kA
 - At 4.3 K
 - Machine simulation cycle (up to 10 kA)

Measurement system at ambient temp.

- Motor + encoder + slip-ring unit (MRU)
- Fast Digital Integrator (FDI)
- FuG low voltage power supply (40 V, 20 A)
- DCCT Hitec MACC-plus
- Search coil shafts

Number of turns	(-)	256
Inner width	(mm)	13.41
Inner length	(mm)	1195.60
Groove thickness	(mm)	1.40
Magnetic surface	(m²)	3.37
Radius	(mm)	21.33

A measurement is an average over 1.2 m

Measurements in 3 positions:

Shaft centered->Two adjacent positions->

- -> central field
 - integral field

Ambient temperature: TF

Measured transfer function		SP101*	SP102	SP103	SP104	SP105	ROXIE
CC 2D	T/kA	-	0.7971	0.7970	0.7979	0.7983	0.7980
CM 2D	T/kA	0.9987	0.9926	0.9916	0.9933	0.9939	0.9949
CM 3D	Tm/kA	1.6916	1.6833	1.6755	1.6793	1.6848	1.6747

MM - ROXIE		SP101*	SP102	SP103	SP104	SP105	ROXIE
CC 2D	units	-	-11	-12	-1	3	0
CM 2D	units	-	-23	-33	-16	-10	0
CM 3D	units	-	51	5	27	60	0

Ambient temperature: multipoles

SP105 CM					
n	bn	an			
2	-2.28	2.87			
3	5.25	-1.34			
4	-0.52	0.75			
5	0.69	-0.82			
6	0.06	0.65			
7	0.35	-0.25			
8	0.04	0.16			
9	0.86	-0.14			
10	0.00	0.01			
11	0.39	-0.06			
12	-0.05	-0.01			
13	-0.10	-0.01			
14	0.00	0.00			
15	-0.02	0.00			

Ambient temperature: up to now...

CM 2D							
	avei	rage	std				
TF**	0.9	929	12				
n	bn* an*		bn*	an*			
2	-0.43	4.75	1.26	1.77			
3	7.76	-0.48	2.02	0.76			
4	-0.22	-0.01	0.49	1.76			
5	1.08	-0.27	0.81	0.38			
6	-0.04	0.30	0.11	0.26			
7	0.24	-0.08	0.09	0.11			
8	0.01	0.00	0.08	0.15			
9	0.80	-0.03	0.06	0.07			
10	-0.01	-0.02	0.04	0.04			

std from ROXIE ±60 μm						
n	bn	an				
2	1.70	1.82				
3	1.08	1.18				
4	0.62	0.67				
5	0.35	0.39				
6	0.17	0.20				
7	0.10	0.10				
8	0.06	0.05				
9	0.03	0.02				
10	0.01	0.01				

* SP104 not considered

** SP101 not considered

Cryogenic temperature: TF and b3

Cryogenic temperature: multipoles

	760 A		11850 A		geometric (5 kA)	
n	bn	an	bn	an	bn	an
2	-2.28	3.99	-3.81	3.06	-3.88	2.76
3	-9.58	-2.45	6.97	-1.05	7.98	-0.98
4	-1.56	0.54	-1.05	0.62	-1.01	0.60
5	3.46	-0.85	0.82	-0.91	0.73	-0.87
6	-0.35	0.60	-0.26	0.65	-0.28	0.60
7	0.81	0.05	0.42	-0.11	0.47	-0.08
8	-0.48	-0.62	-0.32	-0.28	-0.32	-0.30
9	1.50	0.53	0.85	0.36	0.84	0.36
10	0.05	-0.30	-0.03	-0.33	-0.03	-0.32
11	0.11	0.10	0.30	0.23	0.28	0.20
12	-0.04	0.55	0.11	0.11	0.08	0.14
13	-0.37	0.10	-0.14	0.03	-0.15	0.04
14	0.04	0.00	0.03	0.02	0.04	0.01
15	-0.03	0.00	-0.03	-0.01	-0.03	-0.01

cold/warm multipoles 10 b3(8 cryogenic temperature 6 4 2 -6 -4 -10 -8 8 10 2 6 Δ b2-6 -8 -10 ambient temperature

Cryogenic temperature: effect of pre-cycle RR

Cryogenic temperature: effect of temperature

Conclusions

MBHSP105 and comparison with other magnets tested so far:

- MM TF is -10 units on CM (+3 units on CC) wrt calculations
- Best field quality so far: b3 ~ 5 units, others < 3 units</p>
- Saturation on TF as in previous magnets: -4.2 %
- PC effects on b3 larger (+ 5 units) than SP102, SP103: strand layout
- Effects of pre-cycle RR: 2 units on b3 at 50 A s⁻¹ wrt 10 A s⁻¹
- Effect of temperature: larger b3 and different decay

