#### BGO as a Hybrid Scintillator / Cherenkov Radiator for Cost-Effective Time-of-Flight PET

S. E. Brunner and friends

<sup>1</sup>Radiation Science & Technology, TU Delft, Delft, The Netherlands





Horizon 2020 European Union funding for Research & Innovation BGO as a Hybrid Scintillator / Cherenkov Radiator for Cost-Effective Time-of-Flight PET

S. E. Brunner and friends

<sup>1</sup>Radiation Science & Technology, TU Delft, Delft, The Netherlands





Horizon 2020 European Union funding for Research & Innovation BGO as a Hybrid Scintillator / Cherenkov Radiator for Cost-Effective Time-of-Flight PET

#### Timing, timing, timing...

S. E. Brunner and friends

<sup>1</sup>Radiation Science & Technology, TU Delft, Delft, The Netherlands





Horizon 2020 European Union funding for Research & Innovation Motivation

# TOF-PET: Timing, sensitivity and cost effectiveness

#### Time-of-flight Positron Emission Tomography (TOF-PET)

- Best lab results 70 ps to 80 ps FWHM (LSO:Ce, LaBr<sub>3</sub>:Ce)
- System CRT 300 ps to 400 ps FWHM (LSO:Ce based)



Wikimedia commons, http://en.wikipedia.org/ wiki/Positron\_emission\_tomography





### Ultimate timing Study on codoped L(X)SO:Ce



S.E. Brunner

# Ultimate timing





Collaboration with FBK. Thanks to A. Ferri, A. Gola and C. Piemonte!

S.E. Brunner

**TU**Delft

#### Cost effective timing: BGO as hybrid Cherenkov radiator / scintillator



# **BGO & Digital Photon Counter: Coincidence Resolving Time**





#### Delft S.E. Brunner

# Investigating the BGO rise time

Time correlated single photon counting using a single Philips DPC sensor



- Start detector
  - DPC-pixel •
  - Ca-codoped LSO:Ce
  - TR = 90 ps FWHM
- **Stop detector**

activated area

**DPC** tile

- DPC SPAD
- SPTR = 48 ps FWHM
- IRF ≈ 100 ps FWHM







S.E. Brunner



| 2                                                        |                | state-of-the-<br>art                                                                                                                                                                                    | BSR<br>monolithic                                              | DSR<br>monolithic                                                              | 16                         |
|----------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------|
|                                                          | Energy res.    | < 12%                                                                                                                                                                                                   | ~ 10%                                                          | ~ 10%                                                                          | hi 20                      |
|                                                          | Spatial res.   | ~ 4 mm                                                                                                                                                                                                  | 1.7 mm                                                         | 1.1 mm                                                                         | Borgl                      |
| _                                                        | DOI resolution | none                                                                                                                                                                                                    | 3.7 mm                                                         | 2.4 mm                                                                         | Ġ                          |
|                                                          | CRT            | 325 - 400 ps                                                                                                                                                                                            | 214 ps                                                         | 147 ps                                                                         |                            |
| 4.5<br>4<br>3.5<br>3<br>2.5<br>2<br>1.5<br>1<br>0.5<br>0 | PSF<br>1.1 mm  | 10<br>9<br>8<br>7<br>10<br>DOI<br>9<br>8<br>7<br>10<br>0<br>2<br>4<br>6<br>5<br>10<br>0<br>0<br>2<br>4<br>6<br>8<br>10<br>0<br>0<br>10<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 8<br>7<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br> | ×10 <sup>-3</sup><br>CRT<br>147 p<br>147 p<br>100 -300 -200 -100 0 100 200 300 | B. I Beer et al SNMMI 2015 |

[1] G. Borghi, V. Tabacchini, and D. R. Schaart, "Towards monolithic scintillator based TOF-PET systems: practical methods for detector calibration and operation," Phys. Med. Biol., vol. 61, no. 13, pp. 4904–4928, 2016.



S. E. Brunner

x/y error (mm)



G. Borghi 2016



S.E. Brunner



G. Borghi 2016



S.E. Brunner



#### **Questions?**



S.E. Brunner



S.E. Brunner





S.E. Brunner





S.E. Brunner













S.E. Brunner





S.E. Brunner

















## **Determination of the IRF**

- Ca codoped LSO:Ce as start detector
- 3x3x5mm<sup>3</sup>, wrapped in Teflon
- CRT: 127ps FWHM
- start detector TR 90ps FWHM
- stop SPAD TR 48ps FWHM
- IRF ••• 102ps FWHM (assuming Gaussian distribution)
- Contribution of photon travel spread not (yet) included
- Determination could be done e.g. with Cherenkov response from undoped LuAG, see Gundacker et al. PMB 61 (2016)





S.E. Brunner

### **BGO** and detector characteristics



<sup>1</sup>DPC PDE measured by Durini et al., IEEE NSS/MIC 2016, N28-19

