Revisiting supernova neutrino phenomenology with non-standard neutrino self-interactions

Manibrata Sen

Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai, India.

16/06/2017

Based on JCAP 05 (2017) 051

In collaboration with Amol Dighe and Anirban Das.

Supernova explosion

Explosion of a massive $6-8~M_{\odot}$ star

Stalled shock and accretion

Collapse of degenerate core. Bounce and Shock.

Explosion! $\Box \rightarrow A \Box \rightarrow A$

Flavor Oscillations in dense media: Collective effects

- Neutrino oscillation usually involves two kinds of terms
 - Evolution due to vacuum oscillation.
 - 2 MSW potential term (matter effects)
- However, flavor evolution in a dense media → non-linear complicated problem → collective effects.
- High neutrino density can itself give rise to an MSW-like potential. Leads to self-interactions.
- Causes collective oscillations → neutrino flavor spectra in some energy ranges swap.

ν non-standard self-interactions (NSSI)

- Effective operator of the form $G_F\left(G^{\alpha\beta}\,\bar{\nu}_{\mathrm{L}\alpha}\gamma^{\mu}\nu_{\mathrm{L}\beta}\right)\,\left(G^{\zeta\eta}\,\bar{\nu}_{\mathrm{L}\zeta}\gamma_{\mu}\nu_{\mathrm{L}\eta}\right).$
- $\alpha = \beta \to G^{\alpha\beta}$ is flavor-preserving \to flavor-preserving NSSI (FP-NSSI).
- $\alpha \neq \beta \rightarrow G^{\alpha\beta}$ is flavor-violating \rightarrow flavor-violating NSSI (FV-NSSI).

$$G = \begin{bmatrix} 1 + \gamma_{ee} & \gamma_{ex} \\ \gamma_{ex}^* & 1 + \gamma_{xx} \end{bmatrix} = g_{SM} + i\sigma \cdot \boldsymbol{g} = \begin{bmatrix} g_{SM} + g_3 & g_1 - ig_2 \\ g_1 + ig_2 & g_{SM} - g_3 \end{bmatrix}.$$

- Bounds give $\gamma_{\alpha\beta} \sim \mathcal{O}(1)$.
- $q_3 \equiv \text{FP-NSSI} \text{ and } q_1 \equiv \text{FV-NSSI}.$

Bilenky and Santamaria(1999)

Manibrata Sen (TIFR) Invisibles'17, Zurich 16/06/2017 3 / 9

Single energy mode: Standard vs. Non-standard

Standard self-interaction	NSSI
Collective osc. only in IH.	In IH for $ \boldsymbol{g} < g_{SM}$ and NH for $ \boldsymbol{g} > g_{SM}$.
Need to break initial spherical symmetry in NH.	No need to break initial symmetry.
Need $\vartheta_0 \neq 0$.	Can happen for $\vartheta_0 = 0$.
Flavor lepton number(FLN) always conserved. Hence $\nu_e \bar{\nu}_e \rightarrow \nu_\mu \bar{\nu}_\mu$.	FLN need not be conserved. Hence $\nu_e \bar{\nu}_e \nrightarrow \nu_\mu \bar{\nu}_\mu$.

FP-NSSI: pinching of spectral swaps

• Here $(\omega = \Delta m^2/2 E_{\nu})$

$$g_{\omega} \propto F_{\nu_e}(\omega) - F_{\nu_{\alpha}}(\omega) \text{ for } \omega > 0 ,$$

 $\propto F_{\bar{\nu}_{\alpha}}(\omega) - F_{\bar{\nu}_{e}}(\omega) \text{ for } \omega < 0 .$

• FP-NSSI leads to pinching of spectral swaps.

FV-NSSI: development of swaps away from crossing!

- Standard scenario \rightarrow NH and "+" crossing is stable. Becomes unstable in presence of FV-NSSI.
- Since FLN is not conserved, no need to develop around a spectral crossing.
- Can have observable consequences in neutronization burst.

Neutronization burst

- Prompt emission of ν_e during the first 25 ms after bounce.
- ν_{α} s are absent during neutronisation. Hence no crossing in spectra, therefore no collective effects.
- Only MSW effects are considered.
- Hierarchy determination.

Garching simulations

Collective effects during neutronization burst!

Effects of $\nu_e \leftrightarrow \nu_\alpha$ collective oscillations on an initial ν_e spectrum during the neutronization burst.

Neutronization burst: signals

- Signals in a 40 Mt liquid Argon detector using $(\nu_e + ^{40} Ar \rightarrow ^{40} K^* + e^-)$ channel.
- Can make hierarchy determination ambiguous.
- Put flux dependent constraints on NSSI.

Caveats and Future prospects

• Extend to a three flavor framework.

 However, even simple approximations already bring out possible interesting features with the introduction of NSSI. Need a more rigorous study.

Thank You!