Pulse Shape Simulations for the GERDA Experiment

Michael Miloradovic

Universität Zürich

Invisibles17 Zürich, June 2017

- Germanium Detector Array searches for neutrinoless double beta decay (0νββ) of ⁷⁶Ge.
- Ge detectors enriched in ⁷⁶Ge act simultaneously as detector and source material.
- Located underground Laboratori Nazionali del Gran Sasso (LNGS) with 1400 m overburden.
- Surrounded by water tank with photomultipliers (PMTs) to detect
 Cherenkov light induced by muons.

Inside the cryostat: LAr and Ge strings

- Cryostat filled with liquid argon (LAr) for cooling and shielding.
- PMTs detect induced LAr scintillation light to veto background events.
- Ge detectors arranged on 7 strings and directly submerged in LAr.

- Incident particles ionise the germanium proportionally to energy producing charge carriers.
- Charge carrier drift induces charge signal on readout electrode.
- Signal discerns event topologies by:
 - Resolved energy.
 - Pulse Shapes.

4

• Pulse Shape differences: Single location $(0\nu\beta\beta)$ and multiple location (γ) .

- Goal: Simulate induced charge signal of Ge detectors.
- Consistent treatment: Simulated & measured signal through same pulse shape selection criteria – e.g. pulse shape discrimination (PSD).

 Interactions and energy depositions first simulated for entire Ge detector array with Geant4.

- Hit positions placed inside simulated Ge detector electric fields.
- Path of charge carriers depends on electric potential inside the detector.

- Induced charge on readout electrode: Shockley Ramo Theorem. *I* = −*q* · ∇φ(*x*) · *v*_{drift}
- Simulation of weighting potential. Readout electrode set to unit potential.

- Resulting simulated induced charge pulses in identical data format to physics data.
- ► Can thus be run through identical GERDA analysis chain.

Convolution of simulated pulse shapes with electronics response

 \rightarrow Direct **comparison** to real data.

Pulse Shape Simulations for the GERDA Experiment	Michael Miloradovic	8
--	---------------------	---

- Real data energy spectrum of ²²⁸Th calibration:
 - ²⁰⁸TI Full energy peak (FEP)
 - ▶ ²⁰⁸TI Double escape peak (DEP).

• Stacked real data pulses at FEP & DEP \rightarrow Characteristic shape at DEP and α .

- Compare real characteristic average pulses shapes with simulations.
 - \rightarrow Validate pulse shape simulations.

Outlook

Goal

► Complete pulse shape simulation chain with electronic response.

Applications

- Determining PSD efficiencies,.
- Possibility to develop new PSD methods.
- Obtain **improved** background model.
- Future detector **development**.

Pulse Shape Simulations for the GERDA Experiment

Michael Miloradovic