Physik-Insitut

Direct observation of liquid argon scintillation light

Studies of a magnesium fluoride (MgF₂) PMT for neutrinoless double-beta decay experiments

Chloe Ransom

15/06/2017 Page 1

Liquid argon (LAr) active shielding

- Argon scintillation light emitted at 128nm
- Current R11065 PMTs opaque at this wavelength → wavelength shifters required, shift to ~400nm

The GERDA LAr veto system

Transmittance of various Hamamatsu PMT window materials [Hamamatsu PMT handbook]

MgF₂ PMT

- MgF₂ is transparent at 128nm
- MgF₂ PMT could form part of liquid argon setup without use of wavelength shifters → reduction in material

The Hamamatsu R11065 with a MgF₂ window

The Liquid Argon Setup (LArS)

 LArS: chamber for testing PMTs and SiPM arrays during operation in liquid argon or nitrogen, at UZH

PMT fixing for LArS

Schematic of LArS setup

PMT operation

- Impinging photon causes emission of photoelectrons
- Signal is amplified as electrons are accelerated by electric field \rightarrow gain 10^6-10^7
- Signal electrons are collected at anode

Observation of scintillation light

- Scintillation light stimulated by α -emitting ²⁴¹Am source in LArS
- Average waveform shows fast and slow component decays

Observation of scintillation light

- Scintillation light stimulated by α -emitting ²⁴¹Am source in LArS
- Average waveform shows fast and slow component decays

Mean Waveform

Dark count rate measurements

- Dark count rate: rate of events above 0.3 photoelectrons in the absence of external signal
- Increase in DC rate in LAr, but not seen in nitrogen (low light yield for scintillation) → observation of cosmic ray events in LAr

Conclusion and future outlook

- MgF₂ PMT observes LAr scintillation light without the use of wavelength shifting materials
- LAr scintillation light was observed stimulated by a ²⁴¹Am source
- Dark count rate increases in LAr but not in nitrogen → observation of cosmic ray events
- Long term stability tests will be performed in nitrogen and liquid argon