Physik-Insitut # Direct observation of liquid argon scintillation light Studies of a magnesium fluoride (MgF₂) PMT for neutrinoless double-beta decay experiments Chloe Ransom 15/06/2017 Page 1 # Liquid argon (LAr) active shielding - Argon scintillation light emitted at 128nm - Current R11065 PMTs opaque at this wavelength → wavelength shifters required, shift to ~400nm The GERDA LAr veto system Transmittance of various Hamamatsu PMT window materials [Hamamatsu PMT handbook] ## MgF₂ PMT - MgF₂ is transparent at 128nm - MgF₂ PMT could form part of liquid argon setup without use of wavelength shifters → reduction in material The Hamamatsu R11065 with a MgF₂ window ## The Liquid Argon Setup (LArS) LArS: chamber for testing PMTs and SiPM arrays during operation in liquid argon or nitrogen, at UZH PMT fixing for LArS Schematic of LArS setup #### **PMT** operation - Impinging photon causes emission of photoelectrons - Signal is amplified as electrons are accelerated by electric field \rightarrow gain 10^6-10^7 - Signal electrons are collected at anode #### **Observation of scintillation light** - Scintillation light stimulated by α -emitting ²⁴¹Am source in LArS - Average waveform shows fast and slow component decays ## **Observation of scintillation light** - Scintillation light stimulated by α -emitting ²⁴¹Am source in LArS - Average waveform shows fast and slow component decays #### Mean Waveform #### **Dark count rate measurements** - Dark count rate: rate of events above 0.3 photoelectrons in the absence of external signal - Increase in DC rate in LAr, but not seen in nitrogen (low light yield for scintillation) → observation of cosmic ray events in LAr #### Conclusion and future outlook - MgF₂ PMT observes LAr scintillation light without the use of wavelength shifting materials - LAr scintillation light was observed stimulated by a ²⁴¹Am source - Dark count rate increases in LAr but not in nitrogen → observation of cosmic ray events - Long term stability tests will be performed in nitrogen and liquid argon