Singlet scalar Dark matter in a $U(1)_{B-L}$ model without right-handed neutrinos

Shivaramakrishna Singirala ${ }^{1}$ Rukmani Mohanta ${ }^{1}$ Sudhanwa Patra ${ }^{2}$
${ }^{1}$ School of Physics
University of Hyderabad, Hyderabad-500046, India
${ }^{2}$ Center of Excellence in Theoretical and Mathematical Sciences Siksha 'O' Anusandhan University, Bhubaneswar 751030, India

Based on work done in arXiv:1704.01107
'Invisibles 17' Workshop, Physik Institut, University of Zurich, Switzerland June 12-16, 2017

Table of Contents

(1) $B-L$ models and anomaly cancellation
(2) $U(1)_{B-L}$ model without right-handed neutrinos
(3) Relic abundance
(4) Direct searches
(5) Conclusion
(6) Semi annihilation
(7) Conclusion

Table of Contents

(1) $B-L$ models and anomaly cancellation
(2) $U(1)_{B-L}$ model without right-handed neutrinos
(3) Relic abundance
(4) Direct searches
(5) Conclusion
(6) Semi annihilation
(7) Conclusion

$B-L$ models and anomaly cancellation

$B-L$ gauge extension of SM is the simplest model where the difference between baryon and lepton number is promoted to local gauge symmetry. SM fermion content don't cancel the triangle gauge anomalies giving

$$
\mathcal{A}^{\mathrm{SM}}\left[\operatorname{grav}^{2} U(1)_{B-L}\right]=-3 \quad \mathcal{A}^{\mathrm{SM}}\left[U(1)_{B-L}^{3}\right]=-3
$$

Motivated by type-I seesaw mechanism, the solution is to add three right-handed neutrinos with $B-L$ charge -1 in the conventional $B-L$ models. Other possible solution is to add three exotic fermions with charges namely $-4,-4,+5[1,2]$.

$$
\begin{aligned}
\mathcal{A}\left[U(1)_{B-L}^{3}\right] & =\mathcal{A}_{1}^{\mathrm{SM}}\left(U(1)_{B-L}^{3}\right)+\mathcal{A}_{1}^{\text {New }}\left(U(1)_{B-L}^{3}\right) \\
& =-3+(4)^{3}+(4)^{3}+(-5)^{3}=0 \\
\mathcal{A}\left[\text { gravity }^{2} \times U(1)_{B-L}\right] & \propto \mathcal{A}_{1}^{\mathrm{SM}}\left(U(1)_{B-L}\right)+\mathcal{A}_{1}^{\text {New }}\left(U(1)_{B-L}\right) \\
& =-3+(4)+(4)+(-5)=0
\end{aligned}
$$

1. J. C. Montero and V. Pleitez, Phys. Lett. B675 (2009) 64-68.
2. E. Ma and R. Srivastava, Phys. Lett. B741 (2015) 217-222.

Table of Contents

(1) $B-L$ models and anomaly cancellation
(2) $U(1)_{B-L}$ model without right-handed neutrinos
(3) Relic abundance
(4) Direct searches
(5) Conclusion
(6) Semi annihilation
(7) Conclusion

Model description

	Field	$S U(2)_{L} \times U(1)_{Y}$	$U(1)_{B-L}$
Fermions	$Q_{L} \equiv(u, d)_{L}^{T}$	$(\mathbf{2}, 1 / 6)$	$1 / 3$
	u_{R}	$(\mathbf{1}, 2 / 3)$	$1 / 3$
	d_{R}	$(\mathbf{1},-1 / 3)$	$1 / 3$
	$\ell_{L} \equiv(\nu, e)_{L}^{T}$	$(\mathbf{2},-1 / 2)$	-1
	e_{R}	$(\mathbf{1},-1)$	-1
Scalars	$N_{1 R}$	$(\mathbf{1}, 0)$	-4
	$N_{2 R}$	$(\mathbf{1}, 0)$	-4
	$N_{3 R}$	$(\mathbf{1}, 0)$	5
	H	$(\mathbf{2 , 1 / 2)}$	0
	ϕ_{DM}	$(\mathbf{1}, 0)$	n_{DM}
	ϕ_{1}	$(\mathbf{1}, 0)$	-1
	ϕ_{8}	$(\mathbf{1}, \mathbf{0})$	8

Table: Particle spectrum and their charges of the proposed $U(1)_{B-L}$ model.

Scalar potential and Yukawa terms

The scalar potential and the scalar interaction lagrangian of this model are

$$
\begin{aligned}
& V= \mu_{H}^{2} H^{\dagger} H+\lambda_{H}\left(H^{\dagger} H\right)^{2}+\mu_{1}^{2} \phi_{1}^{\dagger} \phi_{1}+\lambda_{1}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+\mu_{8}^{2} \phi_{8}^{\dagger} \phi_{8}+\lambda_{8}\left(\phi_{8}^{\dagger} \phi_{8}\right)^{2} \\
&+\mu_{\mathrm{DM}}^{2} \phi_{\mathrm{DM}}^{\dagger} \phi_{\mathrm{DM}}+\lambda_{\mathrm{DM}}\left(\phi_{\mathrm{DM}}^{\dagger} \phi_{\mathrm{DM}}\right)^{2}+\lambda_{H 1}\left(H^{\dagger} H\right)\left(\phi_{1}^{\dagger} \phi_{1}\right)+\lambda_{H 8}\left(H^{\dagger} H\right)\left(\phi_{8}^{\dagger} \phi_{8}\right) \\
&+\lambda_{18}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{8}^{\dagger} \phi_{8}\right)+\lambda_{H D}\left(H^{\dagger} H\right)\left(\phi_{\mathrm{DM}}^{\dagger} \phi_{\mathrm{DM}}\right)+\lambda_{\mathrm{D} 1}\left(\phi_{\mathrm{DM}}^{\dagger} \phi_{\mathrm{DM}}\right)\left(\phi_{1}^{\dagger} \phi_{1}\right)+\lambda_{\mathrm{D} 8}\left(\phi_{\mathrm{DM}}^{\dagger} \phi_{\mathrm{I}}\right. \\
& \mathcal{L}_{\text {scalar }}=\left(\mathcal{D}_{\mu} H\right)^{\dagger}\left(\mathcal{D}^{\mu} H\right)+\left(\mathcal{D}_{\mu} \phi_{\mathrm{DM}}\right)^{\dagger}\left(\mathcal{D}^{\mu} \phi_{\mathrm{DM}}\right)+\left(\mathcal{D}_{\mu} \phi_{1}\right)^{\dagger}\left(\mathcal{D}^{\mu} \phi_{1}\right) \\
&+\left(\mathcal{D}_{\mu} \phi_{8}\right)^{\dagger}\left(\mathcal{D}^{\mu} \phi_{8}\right)-V\left(H, \phi_{\mathrm{DM}}, \phi_{1}, \phi_{8}\right),
\end{aligned}
$$

where the covariant derivatives are

$$
\begin{aligned}
& \mathcal{D}_{\mu} H=\partial_{\mu} H+i g \vec{W}_{\mu L} \cdot \frac{\vec{\tau}}{2} H+i \frac{g^{\prime}}{2} B_{\mu} H \\
& \mathcal{D}_{\mu} \phi_{\mathrm{DM}}=\partial_{\mu} \phi_{\mathrm{DM}}+i n_{\mathrm{DM}} g_{\mathrm{BL}} Z_{\mu}^{\prime} \phi_{\mathrm{DM}} \\
& \mathcal{D}_{\mu} \phi_{1}=\partial_{\mu} \phi_{1}-i g_{\mathrm{BL}} Z_{\mu}^{\prime} \phi_{1} \\
& \mathcal{D}_{\mu} \phi_{8}=\partial_{\mu} \phi_{8}+8 i g_{\mathrm{BL}} Z_{\mu}^{\prime} \phi_{8}
\end{aligned}
$$

The relevant terms in the Lagrangian for fermions in the present model is given by

$$
\begin{aligned}
& \mathcal{L}_{\text {Kin. }}^{\text {fermion }}=\overline{N_{1 R}} i \gamma^{\mu}\left(\partial_{\mu}-4 i g_{\mathrm{BL}} Z_{\mu}^{\prime}\right) N_{1 R}+\overline{N_{2 R}} i \gamma^{\mu}\left(\partial_{\mu}-4 i g_{\mathrm{BL}} Z_{\mu}^{\prime}\right) N_{2 R} \\
& +\overline{N_{3 R} i} \gamma^{\mu}\left(\partial_{\mu}+5 i g_{\mathrm{BL}} Z_{\mu}^{\prime}\right) N_{3 R} .
\end{aligned}
$$

The Yukawa interaction for the present model is given by

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }} & =Y_{u} \overline{Q_{L}} \widetilde{H} u_{R}+Y_{d} \overline{Q_{L}} H d_{R}+Y_{e} \overline{\ell_{L}} H e_{R} \\
& +\sum_{\alpha=1,2} h_{\alpha 3} \phi_{1} \overline{N_{\alpha R}^{c}} N_{3 R}+\sum_{\alpha, \beta=1,2} h_{\alpha \beta} \phi_{8} \overline{N_{\alpha R}^{c}} N_{\beta R},
\end{aligned}
$$

Table of Contents

(1) $B-L$ models and anomaly cancellation
(2) $U(1)_{B-L}$ model without right-handed neutrinos
(3) Relic abundance
(4) Direct searches
(5) Conclusion
(6) Semi annihilation
(7) Conclusion

Stability of scalar dark matter

In the present model, we do not assume any ad-hoc discrete symmetry as such which can stabilize the dark matter(DM). Rather the model structure itself stabilizes the dark matter particle, say the values of $n_{\text {DM }}$ such as $\pm 4, \pm 5$ and fractional charges forbid the decay of scalar dark matter.

Relic abundance

The relevant interaction term playing a dominant role in relic density with Z^{\prime} being a connector between the visible and dark sector is given by

$$
\mathcal{L}_{I} \supset-n_{\mathrm{DM}} i g_{\mathrm{BL}} Z_{\mu}^{\prime}\left(S \partial^{\mu} A-A \partial^{\mu} S\right)-n_{\mathrm{BL}}^{f} g_{\mathrm{BL}} \bar{f} \gamma^{\mu} f Z_{\mu}^{\prime}
$$

here n_{BL}^{f} denotes the $B-L$ charge for the SM fermion f and the corresponding expression for the annihilation channel is

$$
\hat{\sigma}_{f f}=\sum_{f} \frac{n_{\mathrm{DM}}^{2}\left(n_{\mathrm{BL}}^{f}\right)^{2} g_{\mathrm{BL}}^{4} c_{f}}{12 \pi s} \frac{\left(s-4 M_{\mathrm{DM}}^{2}\right)\left(s+2 M_{f}^{2}\right)}{\left[\left(s-M_{Z^{\prime}}^{2}\right)^{2}+M_{Z^{\prime}}^{2} \Gamma_{Z^{\prime}}^{2}\right]} \frac{\left(s-4 M_{f}^{2}\right)^{\frac{1}{2}}}{\left(s-4 M_{\mathrm{DM}}^{2}\right)^{\frac{1}{2}}},
$$

where c_{f} denotes the color charge of the fermion f with mass $M_{f} . M_{Z^{\prime}}$ is the mass of Z^{\prime} with the decay width $\Gamma_{Z^{\prime}}$. We have implemented the model in LanHEP, micrOMEGAs packages to compute the relic abundance of scalar dark matter.

right-handed neutrinos

Relic abundance

Figure: Variation of relic abundance with the mass of DM for $\frac{M_{Z^{\prime}}}{g_{B L}}$ values consistent with LEP-II, $n_{\mathrm{DM}}=4$ (left panel) and $n_{\mathrm{DM}}=5$ (right panel). Allowed region of $M_{Z^{\prime}}$ and g_{BL} with the mass of dark matter M_{DM} consistent with 3σ in relic constraint for $n_{\mathrm{DM}}=4$.

Table of Contents

(1) $B-L$ models and anomaly cancellation
(2) $U(1)_{B-L}$ model without right-handed neutrinos
(3) Relic abundance
(4) Direct searches
(5) Conclusion
(6) Semi annihilation
(7) Conclusion

Z^{\prime} mediated contribution

The spin-independent(SI) direct detection cross-section is found to get contributions from the h and Z^{\prime}-portal channels. The effective Lagrangian for Z^{\prime}-mediated processes is

$$
i \mathcal{L}_{\mathrm{eff}} \supset-\frac{n_{\mathrm{DM}} g_{\mathrm{BL}}^{2}}{3 M_{Z^{\prime}}^{2}}\left(S \partial^{\mu} A-A \partial^{\mu} S\right) \bar{u} \gamma_{\mu} u-\frac{n_{\mathrm{DM}} g_{\mathrm{BL}}^{2}}{3 M_{Z^{\prime}}^{2}}\left(S \partial^{\mu} A-A \partial^{\mu} S\right) \bar{d} \gamma_{\mu} d
$$

The Z^{\prime} mediated DM -nucleon SI contribution is given by [3]

$$
\sigma_{Z^{\prime}}=\frac{\mu^{2}}{16 \pi} \frac{n_{\mathrm{DM}}^{2} g_{\mathrm{BL}}^{4}}{M_{Z^{\prime}}^{4}}
$$

where $\mu=\left(\frac{M_{n} M_{\mathrm{DM}}}{M_{n}+M_{\mathrm{DM}}}\right)$ is the reduced mass of DM-nucleon system.
S. Khalil, H. Okada, and T. Toma, JHEP 07 (2011) 026.

Higgs mediated contribution

Moving to h-portal SI contribution, the effective Lagrangian is given as

$$
\mathcal{L}_{\mathrm{eff}}=\left(\frac{m_{q}}{v}\right)\left(\lambda_{H D} v\right) \frac{1}{m_{h}^{2}} S S \bar{q} q, \quad q=(u, d)
$$

The h-portal DM-nucleon SI contribution is given by

$$
\sigma_{h}=\frac{\lambda_{H D}^{2} f_{n}^{2} \mu^{2}}{\pi} \frac{M_{n}^{2}}{M_{\mathrm{DM}}^{2} M_{h}^{4}}
$$

where $f_{n}=0.3 \pm 0.03$. The h-portal contribution is dependent on mass of dark matter M_{DM} while Z^{\prime}-portal contribution is insensitive to it. It is convenient to write the individual contributions (in cm^{2}) with $r_{\mathrm{BL}}=\frac{M_{Z^{\prime}}}{g_{\mathrm{BL}}}$ as

$$
\begin{aligned}
\sigma_{Z^{\prime}} & =7.75 \times 10^{-42}\left(\frac{\mu}{1 \mathrm{GeV}}\right)^{2} \times n_{\mathrm{DM}^{2}}^{2} \times\left(\frac{1 \mathrm{TeV}}{r_{\mathrm{BL}}}\right)^{4} \\
\sigma_{h} & =4.577 \times 10^{-44}\left(\frac{\mu}{1 \mathrm{GeV}}\right)^{2} \times \lambda_{H D}^{2} \times\left(\frac{M_{n}}{1 \mathrm{GeV}}\right)^{2} \times\left(\frac{1 \mathrm{TeV}}{M_{\mathrm{DM}}}\right)^{2}
\end{aligned}
$$

Table of Contents

(1) $B-L$ models and anomaly cancellation
(2) $U(1)_{B-L}$ model without right-handed neutrinos
(3) Relic abundance
(4) Direct searches
(5) Conclusion
(6) Semi annihilation
(7) Conclusion

Figure: DM-Nucleon Spin independent cross section versus the mass of the DM with the ratio $r_{\mathrm{BL}}=\frac{M_{Z^{\prime}}}{g_{\mathrm{BL}}}$ value varied in the range $6-15 \mathrm{TeV}$. The first panel depicts Z^{\prime}-mediated cross section and middle panel shows the contribution from h-mediated channels with $\lambda_{H D}$ varied in the range $0.01 \rightarrow 0.1$. Third panel scattered plot in the plane of $g_{B L}$ and $M_{Z^{\prime}}$ where the blue, red and green points represent the values consistent with the current abundance in 3σ range, LUX and XENON100 bounds for $n_{\mathrm{DM}}=4$. The brown dashed line denotes the LHC bound $[4,5]$ on $B-L$ model.
4. ATLAS Collaboration, Phys. Lett. B 761 (2016) 372-392.
5. M. Klasen, F. Lyonnet, and F. S. Queiroz, arXiv:1607.06468.

Table of Contents

(1) $B-L$ models and anomaly cancellation
(2) $U(1)_{B-L}$ model without right-handed neutrinos
(3) Relic abundance
(4) Direct searches
(5) Conclusion
(6) Semi annihilation
(7) Conclusion

Semi annihilation

For $n_{\mathrm{DM}}=1 / 3$ there is a quartic term in the Lagrangian is of the form

$$
\mathcal{L}_{1 / 3}=\frac{\lambda_{\mathrm{DM}}^{\prime}}{3} \phi_{\mathrm{DM}}^{3} \phi_{1}+\text { h.c. }
$$

With this interaction term, there is a semi-annihilation channel $\phi_{\mathrm{DM}} \phi_{\mathrm{DM}} \rightarrow \phi_{\mathrm{DM}} H_{1}$ whose cross section is given by

$$
\hat{\sigma}_{1 / 3}=\frac{\lambda_{\mathrm{DM}}^{\prime}}{64 \pi s} \frac{\left[\left(s-\left(M_{\mathrm{DM}}+M_{H_{1}}\right)^{2}\right)\left(s-\left(M_{\mathrm{DM}}-M_{H_{1}}\right)^{2}\right)\right]^{\frac{1}{2}}}{\left[s\left(s-4 M_{\mathrm{DM}}^{2}\right)\right]^{\frac{1}{2}}} .
$$

Similarly for $n_{\mathrm{DM}}=8 / 3$, the cross section for the semi annihilation channel $\phi_{\text {DM }} \phi_{\text {DM }} \rightarrow \phi_{\text {DM }} H_{8}$

$$
\begin{gathered}
\mathcal{L}_{8 / 3}=\frac{\lambda_{\mathrm{DM}}^{\prime \prime}}{3} \phi_{\mathrm{DM}}^{3} \phi_{8}+\text { h.c. } \\
\hat{\sigma}_{8 / 3}=\frac{\lambda_{\mathrm{DM}}^{\prime \prime}{ }^{2}}{64 \pi s} \frac{\left[\left(s-\left(M_{\mathrm{DM}}+M_{H_{2}}\right)^{2}\right)\left(s-\left(M_{\mathrm{DM}}-M_{H_{2}}\right)^{2}\right)\right]^{\frac{1}{2}}}{\left[s\left(s-4 M_{\mathrm{DM}}^{2}\right)\right]^{\frac{1}{2}}}
\end{gathered}
$$

Figure: Variation of relic abundance Ωh^{2} with the mass of DM for three different sets of quartic couplings $\lambda_{\mathrm{DM}}^{\prime}$ and $\lambda_{\mathrm{DM}}^{\prime \prime}$ fixing $M_{H_{1}}=200 \mathrm{GeV}$ and $M_{H_{2}}=400 \mathrm{GeV}$.
W. Rodejohann and C. E. Yaguna, JCAP 1512 (2015) no. 12, 032.

Table of Contents

(1) $B-L$ models and anomaly cancellation
(2) $U(1)_{B-L}$ model without right-handed neutrinos
(3) Relic abundance
(4) Direct searches
(5) Conclusion
(6) Semi annihilation
(7) Conclusion

Conclusion

- In this article, we have presented in detail the scalar dark matter phenomenology in the context of $U(1)_{B-L}$ extension of SM where three heavy exotic fermions with $B-L$ charges $-4,-4$ and +5 are added to make the model anomaly free.
- A scalar singlet ϕ_{DM} is introduced such that the $U(1)_{B-L}$ symmetry takes care of making it a stable dark matter candidate. A viable parameter space is shown consistent with the current dark matter experimental limits and collider bounds in the light of gauge and scalar mediated channels.
- The explored model is quite consistent with current bounds of recent and ongoing DM experiments and a testable framework built based on the well-tested local gauge principles of standard model.

Acknowledgments

- My sincere gratitude to Physik-Institut, University of Zurich for inviting me to 'Invisibles 17' Workshop, DST-SERB and UPE Phase-II(UOHYD), India for the financial assistance of the visit through grant no. ITS/1332/2017-18 and UH/UPE-II/2017/T-294.

Thank you

- 6. M. Carena, A. Daleo, B. A. Dobrescu, and T. M. P. Tait, "Z gauge bosons at the Tevatron," Phys. Rev. D70 (2004) 093009.
- LUX, D. S. Akerib et al., "First results from the LUX dark matter experiment at the Sanford Underground Research Facility," Phys. Rev. Lett. 112 (2014) 091303.
- XENON100, E. Aprile et al., "Dark Matter Results from 225 Live Days of XENON100 Data," Phys. Rev. Lett. 109 (2012) 181301.
- XENON1T, E. Aprile, "The XENON1T Dark Matter Search Experiment," Springer Proc. Phys. 148 (2013) 93-96.

