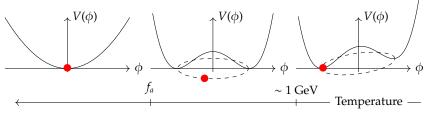
AxionMinicluster

with Javier Redondo (Universidad de Zaragoza)

> 13.06.2017 Julia Stadler

- ▷ Solves the strong CP problem.
- ▶ Makes up dark matter.


 $\stackrel{}{O}(1)$ density contrast collapses to dense clumps of axions.

- ▹ Comoving scale ~ 0.02 pc
- ▶ Mass 10⁻¹²M_☉

AxionMinicluster

▶ Central density $10^{14}\rho_{DM}$

Axion Production

Suppose: $T_{\text{RH}} > f_a \Rightarrow$ inhomogeneous initial value θ_i .

Cosmic Strings

- Where the field winds from 0 to 2π.
- Decay into axions.

Domain Walls

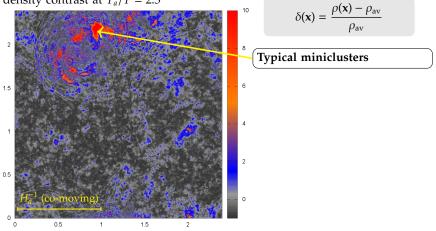
- Form between strings.
- Decay into axions $(N_{\text{DW}} = 1)$.

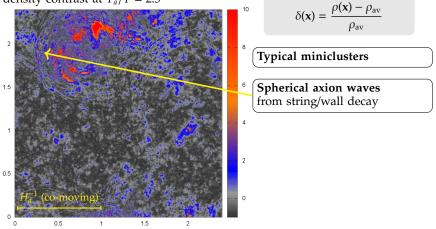
Vacuum Realignment

When $T_a \sim 3m_a$: θ starts oscillating around it's minimum.

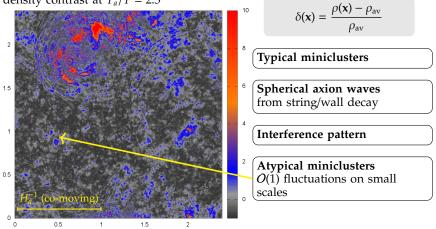
$$\rho_a(t_0) \simeq m_a f_a^2 H_a \theta_i^2 \left(\frac{R_a}{R_0}\right)^3$$

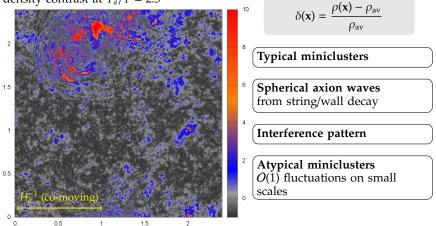
$$\stackrel{1}{\nabla}$$


Inhomogeneous density at scales H_a^{-1} .


Spatial distribution of axions?

[Preskill, Wise, Wilczek (1983); Abott Sikivie (1983); Dine Fischler (1983), Kolb, Tkachev (1996)]




$$\delta(\mathbf{x}) = \frac{\rho(\mathbf{x}) - \rho_{\mathrm{av}}}{\rho_{\mathrm{av}}}$$

 \Rightarrow Inclusion of strings and domain walls leads to substructure on even smaller scales.