arXiv:1704.02297 (2017), PRL accepted


Axion Results with LUX & Future Searches with

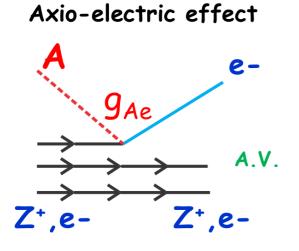
Maria Francesca Marzioni on behalf of the LUX and LZ Collaborations

Invisibles17 Workshop, University of Zurich, 13/06/2017

Axions: why, where, how?

- Potential sources of axions we can look at with LUX and LZ:
 - the Sun —> QCD axions (Peccei-Quinn solution for the strong CPV problem)

 our Galaxy —> Axion-Like Particles (ALPs) introduced by extensions of the Standard Model, suitable (cold) dark matter candidates


Axions: why, where, how?

- Potential sources of axions we can look at with LUX and LZ:
 - the Sun —> QCD axions (Peccei-Quinn solution for the strong CPV problem)

 our Galaxy —> Axion-Like Particles (ALPs) introduced by extensions of the Standard Model, suitable (cold) dark matter candidates

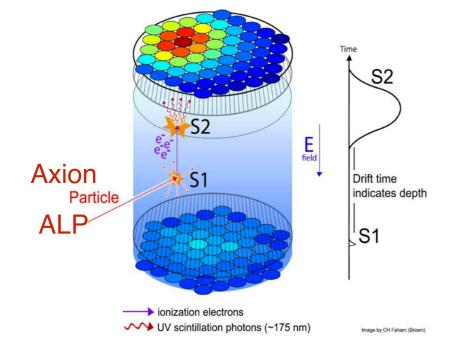
- F. T. Avignone et al., Phys. Rev. D 35, 2752 (1987);
- M. Pospelov et al., Nucl. Rev. D 78, 115012 (2008);

A. Derevianko et al., Phys. Rev. D 82, 065006 (2010)

- Axions and ALPs can couple with electrons, via the so called axio-electric effect
 - we can measure the coupling between axions/ALPs and electrons (g_{Ae})

$$\sigma_{Ae} = \sigma_{pe}(E_A) \frac{g_{Ae}^2}{\beta_A 16\pi\alpha_{em}m_e^2} \left(1 - \frac{\beta_A^{2/3}}{3}\right)$$

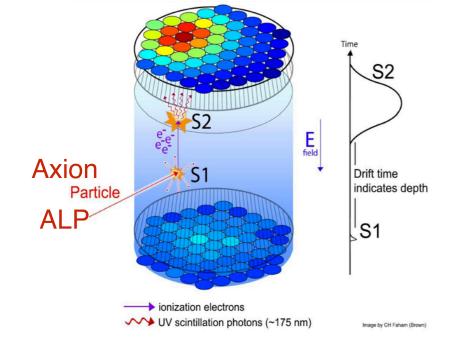
Maria Francesca Marzioni



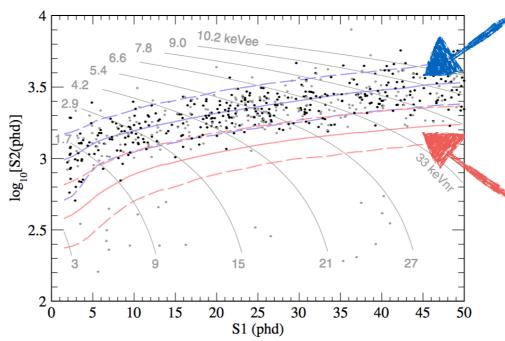
The use of axio-electric effect to detect axions/ALPs with a xenon TPC

 LUX has operated 4850 feet underground, in Davis Carven of the Sanford Underground Research Facility (South Dakota, USA)

- LUX is a **dual phase xenon TPC** (250 kg active mass)
 - scintillation (S1) + ionisation (S2) signal
 - NR vs ER discrimination thanks to S2/S1



Loc I The use of axio-electric effect to detect axions/ALPs with a xenon TPC


 LUX has operated 4850 feet underground, in Davis Carven of the Sanford Underground Research Facility (South Dakota, USA)

- LUX is a **dual phase xenon TPC** (250 kg active mass)
 - scintillation (S1) + ionisation (S2) signal
 - NR vs ER discrimination thanks to S2/S1

D. S. Akerib et al., Phys. Rev. Lett. 116, 161301 (2016)

ER band: most of the background + potential axion signal

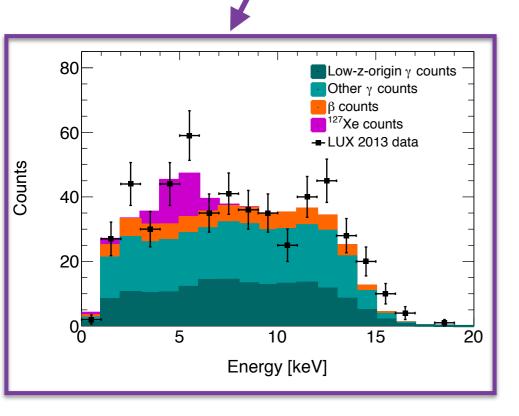
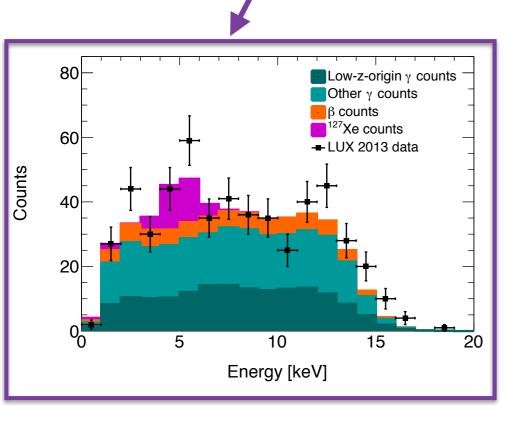
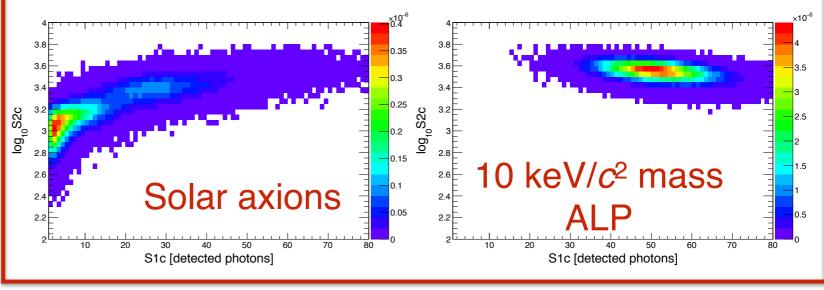

NR band: few background events + potential WIMP signal

FIG. 2. Observed events in the 2013 LUX exposure of 95 live days and 145 kg fiducial mass. Points at <18 cm radius are black; those at 18–20 cm are gray. Distributions of uniform-in-energy electron recoils (blue) and an example 50 GeV c^{-2} WIMP signal (red) are indicated by 50th (solid), 10th, and 90th (dashed) percentiles of S2 at given S1. Gray lines, with ER scale of keVee at top and Lindhard-model NR scale of keVnr at bottom, are contours of the linear combined S1-and-S2 energy estimator [19].

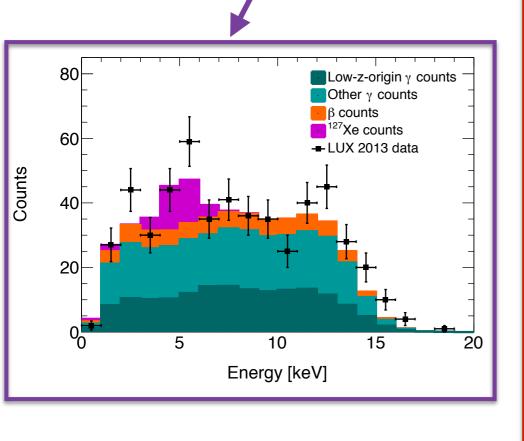
Maria Francesca Marzioni


 Test LUX 2013 data (95 live days x118 kg fiducial mass) against background + signal model


X

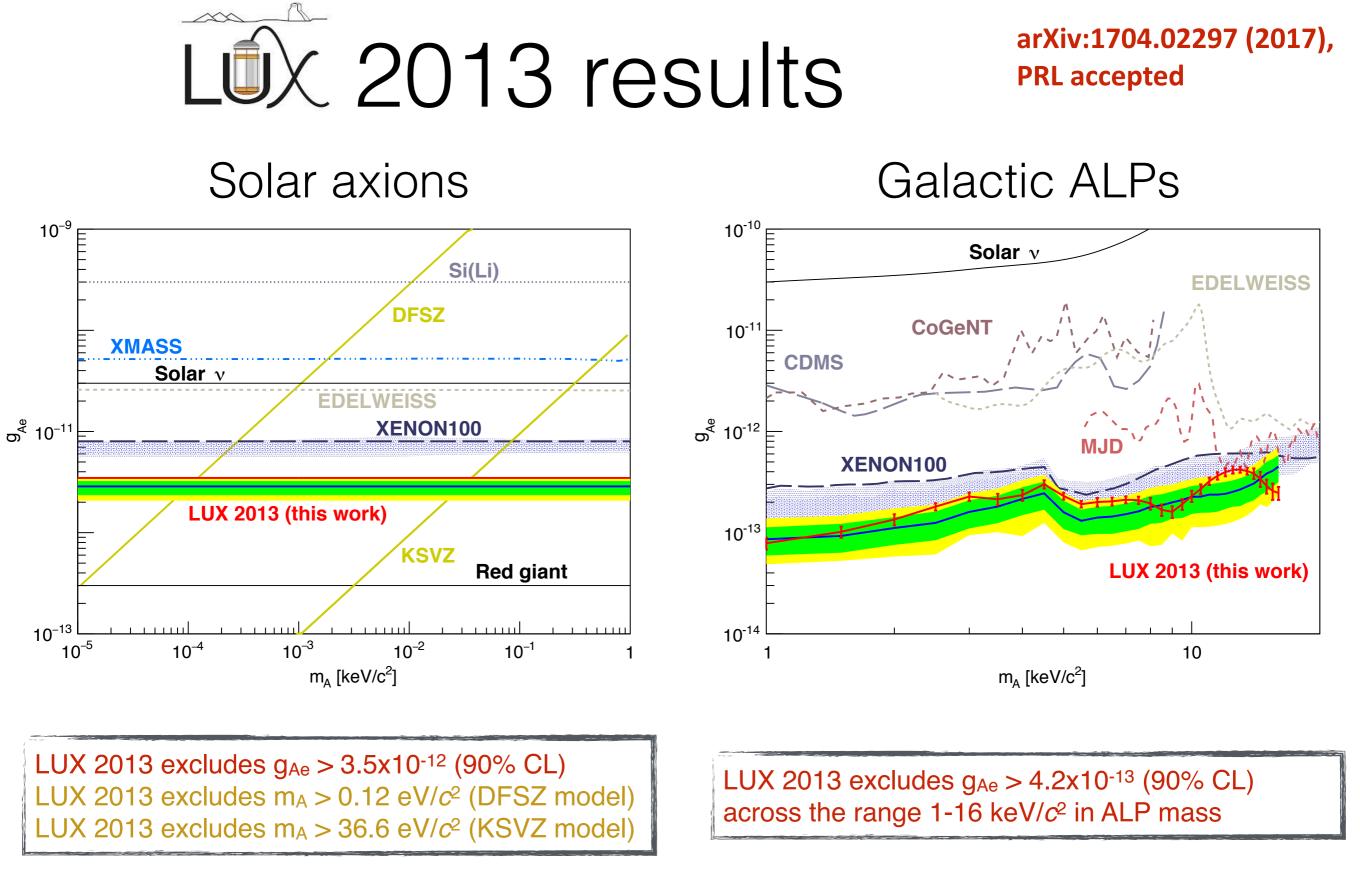
LUX 2013 data analysis

 Test LUX 2013 data (95 live days x118 kg fiducial mass) against background + signal model

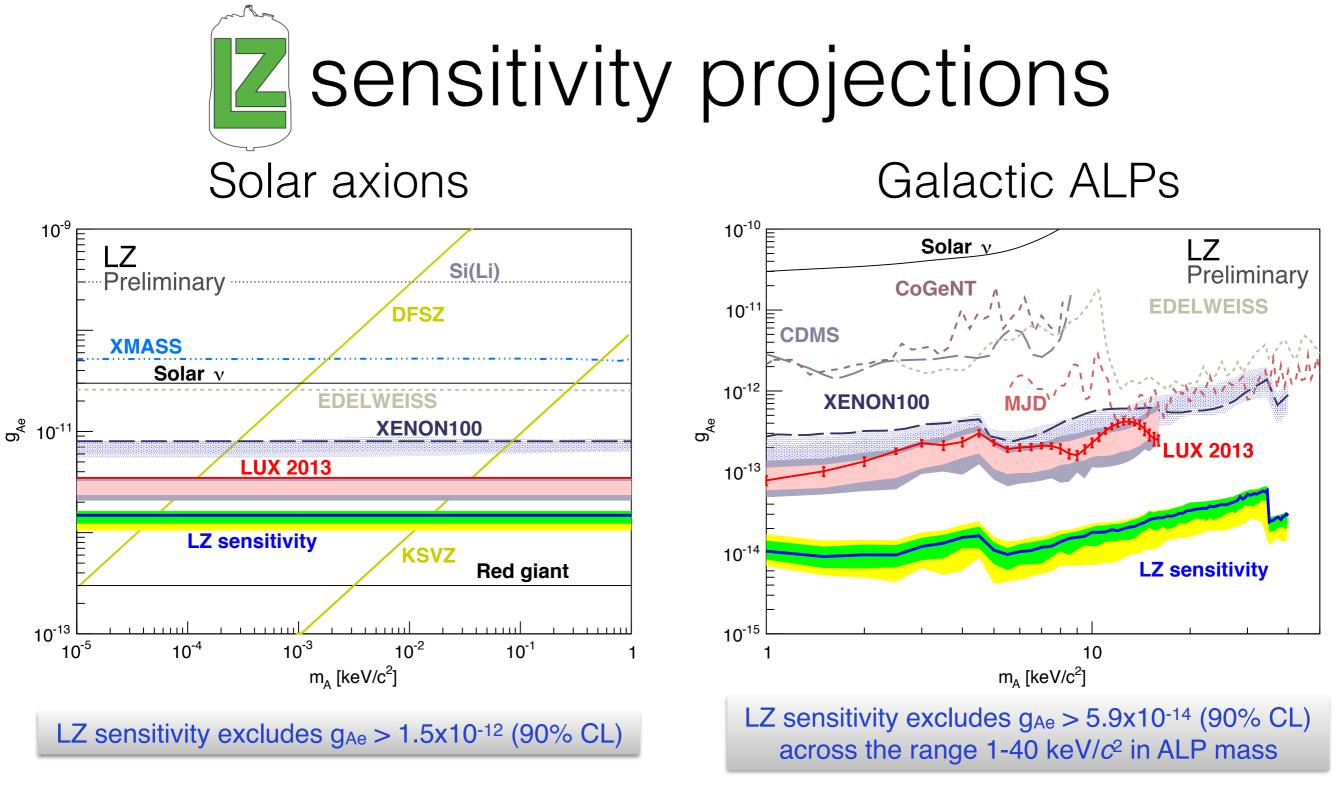


- Solar axion flux [J. Redondo, JCAP 12, 008 (2013)] times photo-electric cross section
- Sharp spectral feature as at rest within the galaxy (ER recoil energy = ALP mass)
- Resolution and efficiency effects modelled in accordance with NEST [M. Szydagis et al., JINST 6, P10002 (2011)]

Lix 2013 data analysis


 Test LUX 2013 data (95 live days x118 kg fiducial mass) against background + signal model

- Solar axion flux [J. Redondo, JCAP 12, 008 (2013)] times photo-electric cross section
- Sharp spectral feature as at rest within the galaxy (ER recoil energy = ALP mass)
- Resolution and efficiency effects modelled in accordance with NEST [M. Szydagis et al., JINST 6, P10002 (2011)]



 Set a two-sided limit on the coupling g_{Ae} with a Profile Likelihood Ratio analysis, having the BG rates as nuisance parameters and [S1,S2,r and z] as observables

• Analysis of the complete LUX exposure for axion and ALP searches is planned

X

- Next generation experiment, which will take LUX's place in the Davis Cavern at the Sanford Underground Research Facility (South Dakota, USA) and is expected to run for 1000 live days x 5.6 ton fiducial mass
- Profile Likelihood Ratio analysis to extract the sensitivity, using fake data generated according to the LZ background model

X

Thank you!

-	The	LÚ	x cc	ollat	oora	tior)
Berkeley I	Lab / UC Berkeley	Lawrence		Univers		UCSB UC Sar	
Bob Jacobsen	PI, Professor	Adam Bernstein	PI, Leader of Adv.	Matthew Szydagis	PI, Professor	Harry Nelson	PI,
Murdock Gilchriese	Senior Scientist		Detectors Grp.	Jeremy Mock	Postdoc	Susanne Kyre	En
Kevin Lesko	Senior Scientist	Kareem Kazkaz	Staff Physicist	Sean Fallon	Graduate Student	Dean White	En
Michael Witherell	Lab Director	Jingke Xu	Postdoc Graduate Student	Steven Young	Graduate Student	Carmen Carmona	Po
Peter Sorensen	Scientist	Brian Lenardo	Graduate Student			Scott Haselschwardt	
			alara Dartural	AM Texas A	&M University	Curt Nehrkorn	Gr
Simon Fiorucci	Project Scientist	LIP Coir	<i>,</i> 0	James White †	PI, Professor	Melih Solmaz	Gr
Attila Dobi	Postdoc	Isabel Lopes	PI, Professor	Robert Webb	PI, Professor		Univ
Daniel Hogan	Graduate Student	Jose Pinto da Vladimir Solovov	Assistant Professor	Rachel Mannino	Graduate Student		Lone
Kate Kamdin	Graduate Student	Francisco Neves	Senior Researcher Auxiliary Researcher	Paul Terman	Graduate Student	Chamkaur Ghag	PI,
Kelsey Oliver-Mallor	y Graduate Student	Alexander Lindote	,	D 1 1		James Dobson	Po
		Claudio Silva	Postdoc Postdoc	Berkeleyu	C Berkeley (Yale)	Sally Shaw	Gra
BROWN Brow	n University	Paulo Bras	Graduate Student	Daniel McKinsey	PI, Professor	🥵 Universit	y o
Richard Gaitskell	PI. Professor			Ethan Bernard	Project Scientist	Carter Hall	PI,
Samuel Chung	Graduate Student	SLAC SLAC	Stanford (CWRU)	Scott Hertel	Postdoc	Jon Balajthy	Gra
Dongqing Huang	Graduate Student	Dan Akerib	PI, Professor	Kevin O'Sullivan	Postdoc	Richard Knoche	Gr
Casey Rhyne	Graduate Student	Thomas Shutt	PI, Professor	Elizabeth Boulton	Graduate Student	University	
Will Taylor	Graduate Student	Tomasz Biesiadzinsk	i Research Associate	Evan Pease	Graduate Student	Frank Wolfs	y U Pl.
James Verbus	Graduate Student	Christina Ignarra	Research Associate	Brian Tennyson	Graduate Student	Wojtek Skutski	Se
<u> </u>		Wing To	Research Associate	Lucie Tvrznikova	Graduate Student	Eryk Druszkiewicz	Gra
W University of	of Edinburgh, UK	Rosie Bramante	Graduate Student	Nicole Larsen	Graduate Student	Dev Ashish Khaitan	Gra
Alex Murphy	PI, Professor	Wei Ji	Graduate Student	UCDAVI	S UC Davis	Diktat Koyuncu	Gra
Paolo Beltrame	Research Fellow	T.J. Whitis	Graduate Student		-	M. Moongweluwan	Gra
Tom Davison	Graduate Student	M SD Mines		Mani Tripathi	PI, Professor	Jun Yin	Gra
Maria F. Marzioni	Graduate Student			Britt Hollbrook	Senior Engineer	-	
Imperial College	Imperial College	Xinhua Bai	PI, Professor	John Thomson	Development	University	of
London	London, UK	Doug Tiedt	Graduate Student	Dave Hemer	Senior Machinist	Dongming Mei	PI,
Henrique Araujo	PI, Reader			Ray Gerhard	Electronics Engineer	Chao Zhang	Po

Professor

Postdoo

Graduate Studen

Tim Sumner

Alastair Currie

Khadeeia Yazdan

Staff Physicist Postdoc Graduate Stud LIP Coimbra, Portugal PI. Professor nes Assistant Professo Senior Researche Auxiliary Researche Postdo Postdoc Graduate Student SLAC Stanford (CWRU) PI, Professor PI Professor Research Associate **Research Associate** Graduate Student Graduate Student Graduate Student SD Mines PI Professor

Graduate Student SDSTA / Sanford Lab David Taylo Project Enginee Markus Horr Research Scien Dana Byram Support Scientis

UAS Univ	University at Alban				
Matthew Szyda	igis	PI, Profes	sor		
Jeremy Mock		Postdoc			
Sean Fallon		Graduate	Stud		
Steven Young		Graduate	Stud		

Texas A&M University James White • PI. Profess PI. Professo

Project Scientist

Graduate Studen

acob Cutte

Sergev Uvarov

Aaron Manalaysa

Santa Barbara PI. Professor Harry Nelson Susanne Kyre Engineer Enginee Dean White Carmen Carmona Postdoc Graduate Studen Curt Nehrkorr Graduate Studer Aelih Solmaz Graduate Studer

Sally Shav Graduate Student University of Maryland PI. Professor Carter Hall

Jon Balaithy Graduate Studen Richard Knoche Graduate Student University of Rochester Frank Wolfs PI. Professo Wojtek Skutsł Senior Scientis Ervk Druszkiewicz Graduate Student Dev Ashish Khaitan Graduate Student Diktat Kovuncu Graduate Student

M. Moongweluwa Graduate Student Graduate Student Jun Yin University of South Dakota

PI. Professo

Chao Zhang University of Wisconsin Kimberly Palladino PI, Asst Professor Graduate Student

It's been a very interesting year for LUX! arXiv:1705.03380 (2017), PRL accepted arXiv:1704.02297 (2017), PRL accepted Phys. Rev. D 95, 012008 (2017) Phys. Rev. Lett. 118, 021303 (2017) Phys. Rev. Lett. 116, 161302 (2016) Phys. Rev. Lett. 116, 161301 (2016) Phys. Rev. D 93, 072009 (2016)

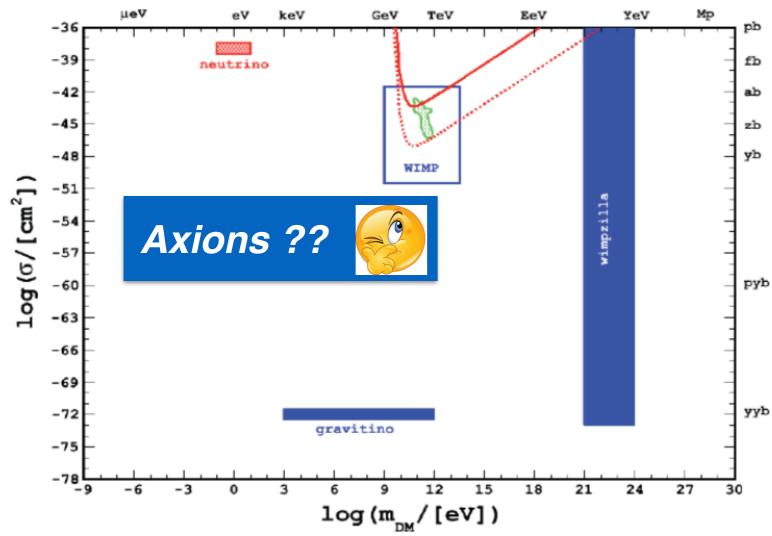
The *C* collaboration

P Coimbra (Portuga Center for Underground Physics (Korea) MEPhI (Russia) Edinburgh University (UK) University of Liverpool (UK) Imperial College London (UK) University College London (UK) University of Oxford (UK) STFC Rutherford Appleton Laboratories (UK) University of Sheffield (UK)

University of Alabama University at Albany SUNY Berkeley Lab (LBNL) University of California, Berkeley **Brookhaven National Laboratory Brown University** University of California, Davis Fermi National Accelerator Laboratory Lawrence Livermore National Laboratory University of Maryland University of Michigan Northwestern University University of Rochester University of California, Santa Barbara University of South Dakota South Dakota School of Mines & Technology South Dakota Science and Technology Authority SLAC National Accelerator Laboratory Texas A&M Washington University University of Wisconsin

Back-up slides

HOMESTAR

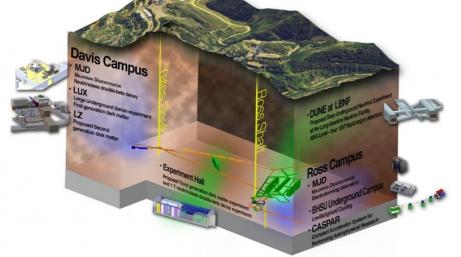


Why axions ?

 In Particle Physics, the axion field provides a dynamical solution to the strong CP violation problem (Peccei-Quinn solution)

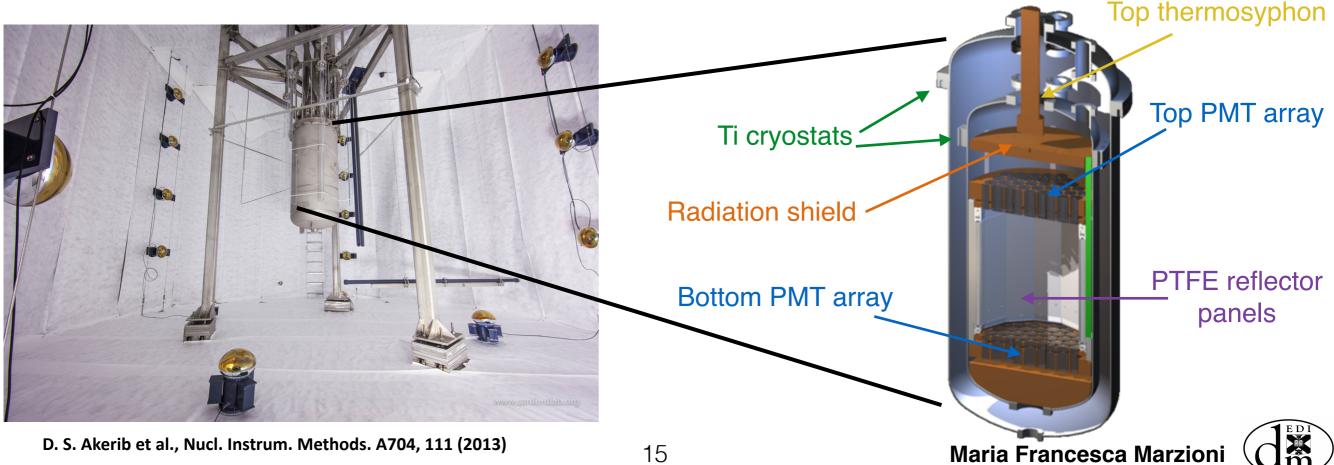
- <u>Axions</u> do have the main DM characteristics: nearly collisionless, neutral, non baryonic, present within the Universe in sufficient quantities to provide the DM density
- Extensions of the Standard Model of Particle Physics introduce the so called <u>axion-</u> <u>like particles</u> (ALPs), which could be dark matter candidates
 - The scenario of Dark Matter searches can be wider than just WIMPs

X

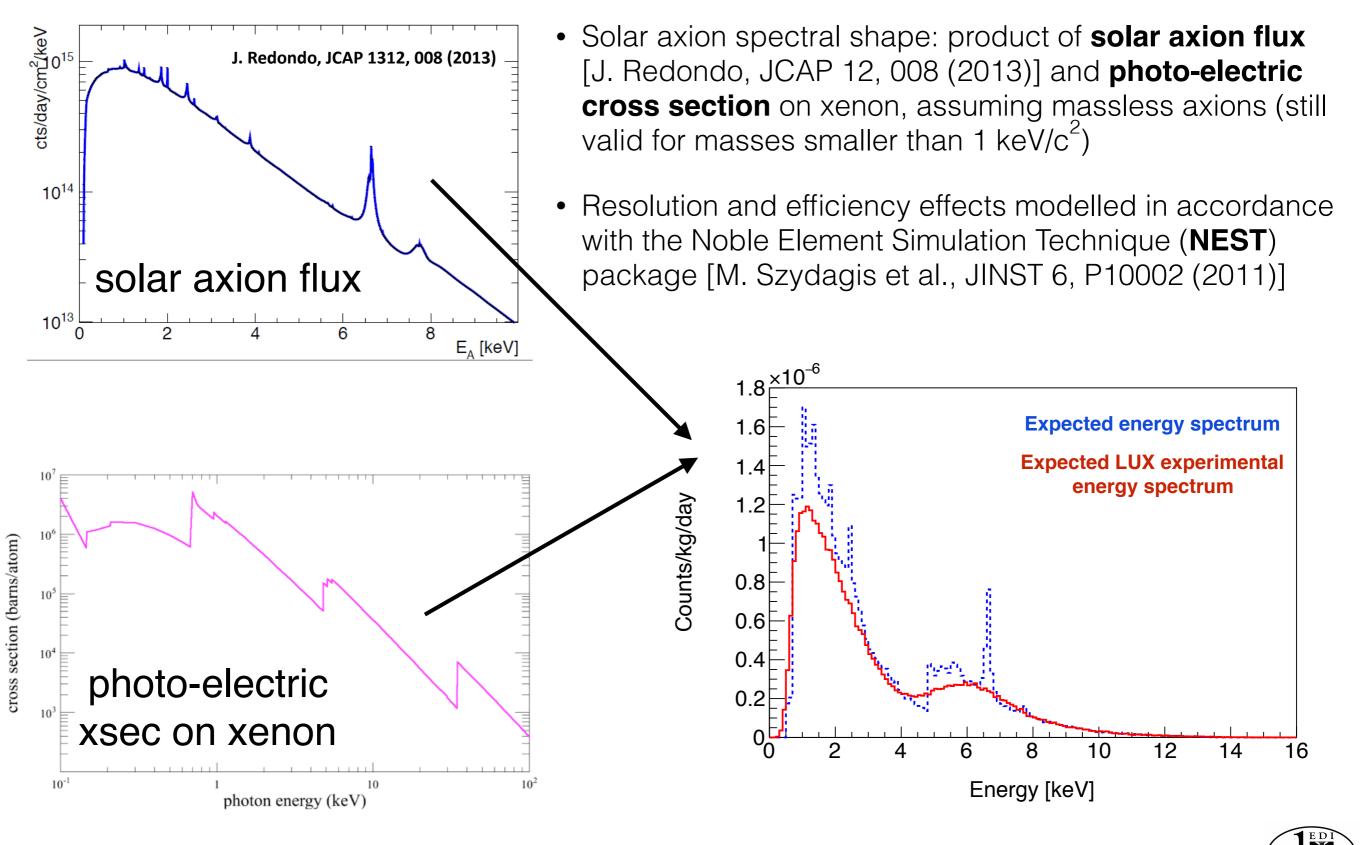


Why axions ? (Particle Physics)

- The Strong CP violation problem
 - the QCD Lagrangian acquires a term, proportional to a static parameter θ, because of the non zero divergence of the axial current
 - this term is CP violating, but we do not $L_{QCD} = \overline{\psi}(i\gamma^{\mu}D_{\mu} m)\psi \frac{1}{4}G^{a\mu\nu}G^{a}_{\mu\nu} + \frac{\alpha_{S}\overline{\theta}}{8\pi}G^{a}_{\mu\nu}\widehat{G}^{a\mu\nu}$ observe any CP violation in strong interactions
- The Peccei and Quinn solution (1977)
 - a new global symmetry U(1)_PQ is introduced and spontaneously broken at some large energy scale, $L = \overline{\psi}(i\gamma^{\mu}D_{\mu} m)\psi \frac{1}{4}G^{a\mu\nu}G^{a}_{\mu\nu}$ and the axion is the Nambu-Goldstone boson generated $-\frac{1}{2}\partial_{\mu}a_{phys}\partial^{\mu}a_{phys} + L_{int}[\partial^{\mu}a_{phys}/f,\psi] + \frac{a_{phys}}{f_{a}}\xi\frac{\alpha_{S}}{8\pi}G^{a}_{\mu\nu}\widehat{G}^{a\mu\nu}$
 - the axion field terms introduced in the QCD Lagrangian, cancel out the term proportional to θ, providing a dynamical solution to the strong CP problem



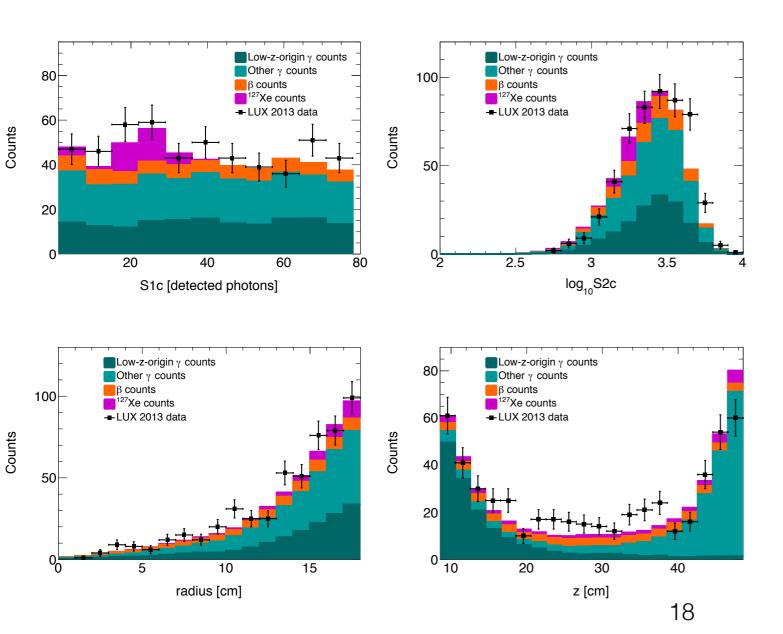
The Large Underground Xenon experiment

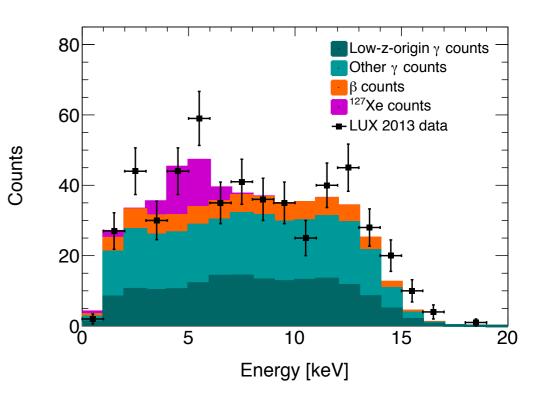

• LUX has operated 4850 feet underground, in Davis Carven of the Sanford Underground Research Facility (South Dakota, USA)

- 370 kg of liquid xenon, 250 kg of active mass
 - with a layer of gaseous xenon maintained above the liquid xenon (dual phase TPC)
- Vertical electric field applied (181 V/cm)
- 61 top + 61 bottom **PMTs** to detect signals

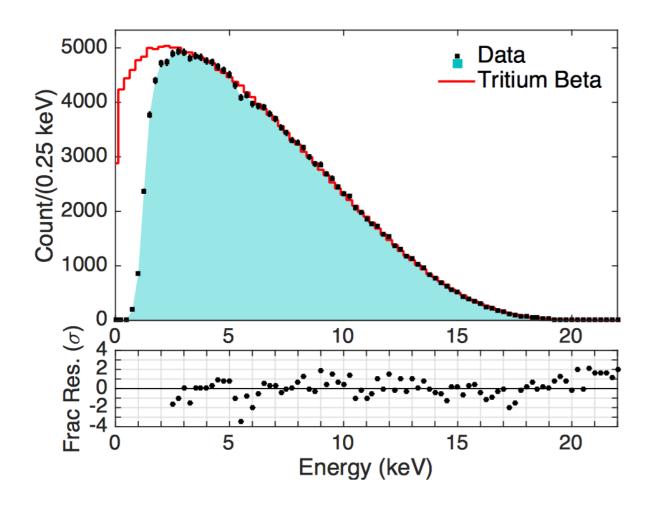
D. S. Akerib et al., Nucl. Instrum. Methods. A704, 111 (2013)

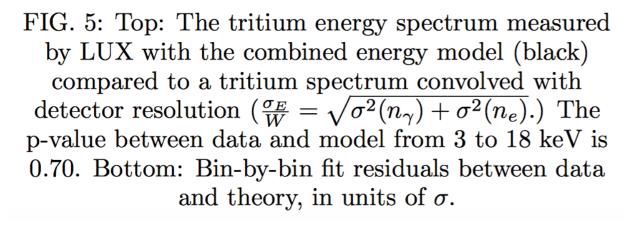
The solar axions spectral shape


LUX 2013 search data & the background model


- LUX 2013 data exposure: 95 live days x118 kg fiducial mass
- Low rate of background radioactivity thanks to detector design, location deep underground, construction materials, xenon self-shielding, active circulation and purification
- Different contributions to the background:
 - Compton scattering of γ rays from detector component radioactivity
 - additional γ-ray contribution from heavily down-scattered emission from decays in the center of a large copper block below the PMTs
 - ⁸⁵Kr and Rn-daughter contaminants in the liquid xenon undergoing beta decays with no accompanying γ rays detected
 - x rays emitted following those $^{127}\mbox{Xe}$ electron-capture decays where the coincident γ ray escapes the xenon

- LUX 2013 data and background model as a function of recoil energy, with the energy reconstructed as E = [S1c/g1+ S2c/(εg2)] W
 - g1: geometric light collection efficiency and PMT quantum efficiency
 - eg2: electron extraction efficiency and number of photons detected per electron extracted




- Backgrounds modelled on the **four observables** used in the statistical analysis: the prompt scintillation (S1) and the logarithm in base 10 of the proportional (S2) signal, and the radius (r) and depth (z) of the event location
- Statistical Profile Likelihood Ratio analysis, aimed at setting a twosided limit on the coupling between axions/ALPs and electrons g_{Ae}, having the BG rates as nuisance parameters

LUX efficiency for electronic recoils

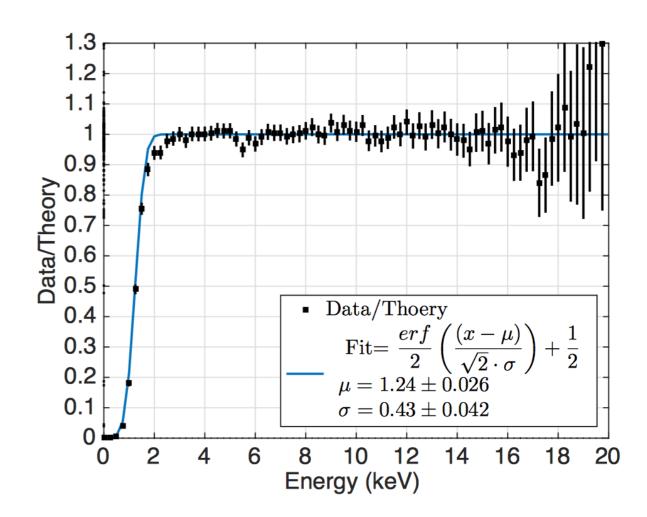


FIG. 6: Ratio of the measured tritium energy spectrum and the true one convolved with the detector resolution. A fit to an error function is shown.

D. S. Akerib et al., Phys. Rev. D93, 072009 (2016)

LUX energy resolution for electronic recoils

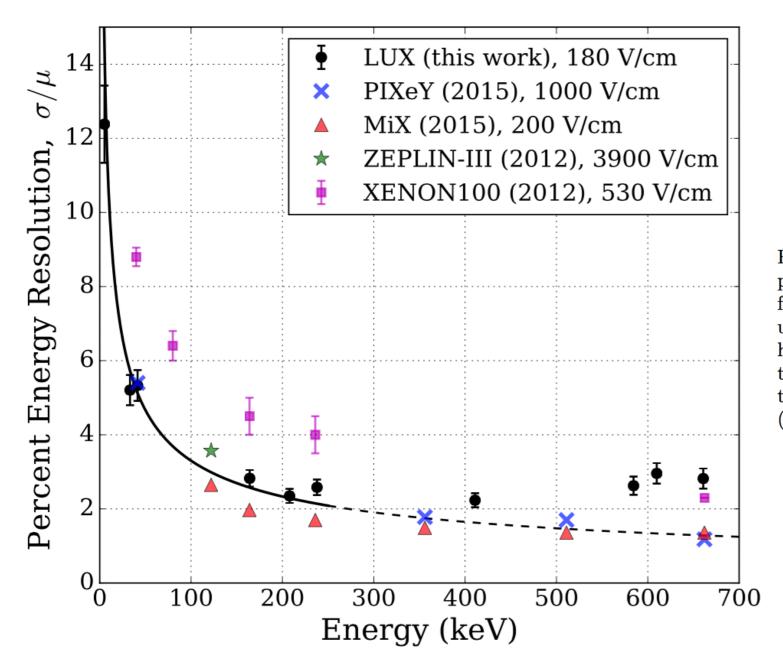
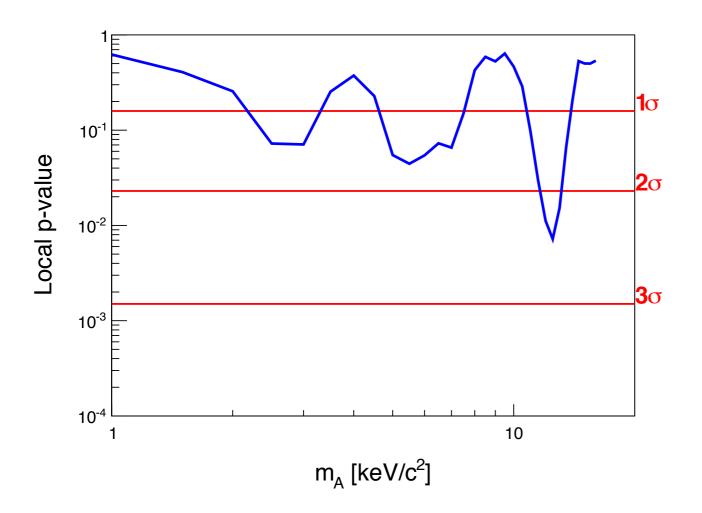


FIG. 8. The measured energy resolution at known energy peaks in the LUX ER backgrounds. The detector is optimized for low energy sensitivity, and variable amounts of PMT saturation and single-electron contributions affect S2 pulses and hamper the energy resolution at high energy, as discussed in the text. Data from the PIXeY (blue x; [26, 27]), MiX (red triangle; [28]), ZEPLIN-III (green star; [29]), and XENON100 (magenta square; [30]) are shown for comparison.

D. S. Akerib et al., Phys. Rev. D95, 012008 (2017)

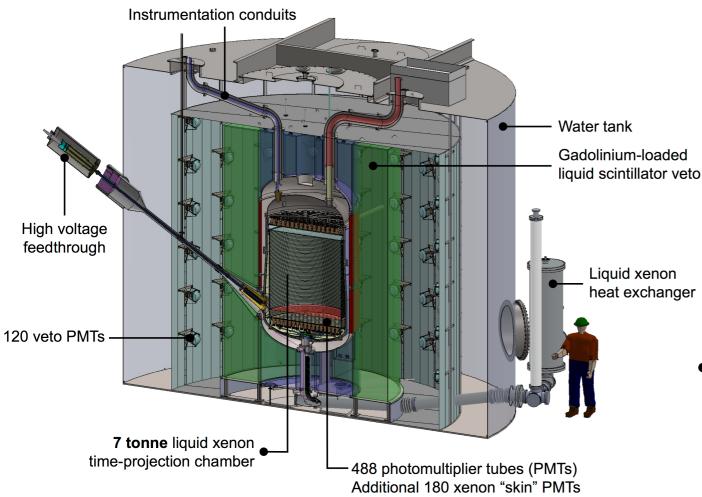
Limit conversion: nSig to gAe

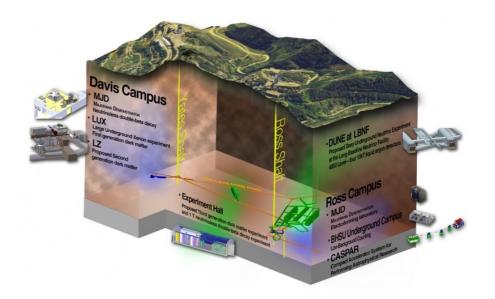
- Limit on gAe = gAe_{sim} * (nSig/nPDF)^{power}
 - gAe_{sim} = arbitrary coupling, used to generate the signal model
 - nSig = limit on the number of events, as set by the PLR
 - nPDF = integral of the signal PDFs * exposure
 - power varies with the axion type
 - it is 0.25 for solar axions, as the interaction rate scales with gAe⁴
 - it is 0.50 for galactic ALPs, as the interaction rate scales with gAe²


$\widehat{\mathbf{W}}$ What can we compare the limit on g_{Ae} with, in the case of solar axions ?

- QCD axion theoretical models:
 - **DFSZ**: axion is the phase of a new electroweak singlet scalar field and couples to a new heavy quark, not to Standard Model ones
 - KSVZ: axion does not couple directly to quarks and leptons, but via its interaction with two Higgs doublets
- Assuming one of these two models, it would be possible to extract a limit on the axion mass, which makes a (model dependent) comparison between g_{Ae} and g_{Ay} feasible
- **Red Giant** limit: the degenerate core of a low-mass red giant before helium ignition is a helium white dwarf; the observed white-dwarf luminosity function reveals that their cooling speed agrees with expectations, constraining new cooling agents such as axion emission

Look Elsewhere Effect in the LUX 2013 ALPs analysis


- Local p-value as a function of the ALP mass, with the corresponding number of standard deviations (σ) away from the null hypothesis
- At 12.5 keV/c² a local p-value of 7.2×10⁻³ (2.4σ deviation) corresponds to a global p-value of 5.2×10⁻² (1.6σ deviation) applying the Look Elsewhere Effect [E. Gross and O. Vitells, Eur. Phys. J., C70:525 (2010)]



- Dual-phase xenon TPC: 10 ton total mass,
 7 ton active LXe mass, 5.6 ton fiducial mass
- Expected to run for 1000 live days

The LZ Dark Matter Experiment

 Will be installed at SURF, taking LUX's place — onsite improvements in infrastructure for LZ

