Novel Method for Detecting Ultralight Dark Matter
 In preparation

Hajime Fukuda, T.T. Yanagida, S. Matsumoto June 11, 2017

Kavli IPMU, U. Tokyo

Introduction

- Dark matter is one of the most rigid new physics
- Which mass range?

Particle DM Mass Range

Particle DM Mass Range

Ultralight DM (a.k.a. Fuzzy DM)

- DM for $10^{-22} \mathrm{eV} \lesssim m_{\mathrm{DM}} \lesssim \mathrm{eV}$
- Must be Bosonic
- Advantages in the small scale structure over WIMP

Hu, et al., 2000

- May be from moduli d.o.f.

Most Important Point

- How could we detect them?
- Production - \times
- Indirect Detection $-\times($ or $\triangle)$
- Direct Detection

Direct Detection

- One recoil may be small
- Not enough to detect itself
- However, n_{DM} is quite large
- What is an appropriate target?
- Measurement must be precise enough
- Large enhancement

Enhancement Effect

- The cross section gets enhanced by
- Stimulated emission
- We don't include since DM distribution is unknown
- Coherent effect on the target

Coherent Effect

- e.g. Coulomb scattering

- For $q R<1, \sigma \propto Z^{2}$!

Coherent Effect

- Naively, $\sigma \propto N_{\text {targ }}^{2}$
- The larger, the better
- Use planets as the target!, $N \sim 10^{50-58}$
- Measurement is very accurate,

$$
\Delta v / v \Delta t \lesssim 10^{-(17-19)} \mathrm{s}^{-1}
$$

Real Cross Section

- Unfortunately, simple $N_{\text {targ }}^{2}$ scaling is wrong
- Incident wave is too disturbed
- Planets looks as uniform sphere to DM
- Schrödinger eq. with $V(r)=V_{0} \Theta(R-r)$
- Coherent effect is now properly included

Real Cross Section

Final Result

- For the best target, we need one order more
- $\sigma \sim m_{\mathrm{DM}}{ }^{2} / \Lambda^{4}, \Lambda \sim 10^{13} \mathrm{GeV}\left(m \lesssim 10^{-14} \mathrm{eV}\right)$

