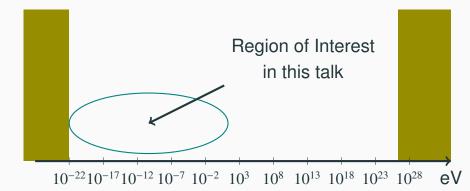
Novel Method for Detecting Ultralight Dark Matter In preparation


Hajime Fukuda, T.T. Yanagida, S. Matsumoto

June 11, 2017


Kavli IPMU, U. Tokyo

- Dark matter is one of the most rigid new physics
- Which mass range?

Particle DM Mass Range

Particle DM Mass Range

Ultralight DM (a.k.a. Fuzzy DM)

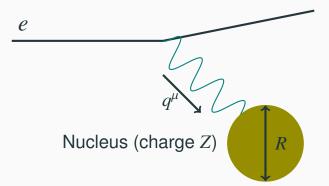
- DM for $10^{-22} \text{ eV} \lesssim m_{\text{DM}} \lesssim \text{eV}$
- Must be Bosonic
- Advantages in the small scale structure over WIMP Hu, *et al.*, 2000
- May be from moduli d.o.f.

Most Important Point

• How could we detect them?

- Production ×
- Indirect Detection \times (or \triangle)
- Direct Detection

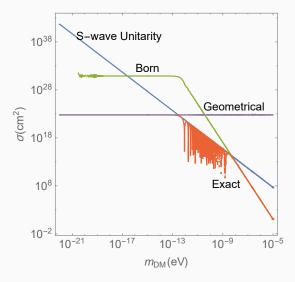
Direct Detection


- One recoil may be small
 - Not enough to detect itself
- However, *n*_{DM} is quite large
- What is an appropriate target?
 - Measurement must be precise enough
 - Large enhancement

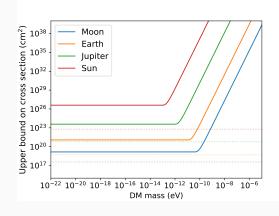
Enhancement Effect

- The cross section gets enhanced by
 - Stimulated emission
 - We don't include since DM distribution is unknown
 - Coherent effect on the target

Coherent Effect



- Naively, $\sigma \propto N_{\rm targ}^2$
- The larger, the better
- Use planets as the target!, $N \sim 10^{50-58}$
 - Measurement is very accurate, $\Delta v / v \Delta t \lesssim 10^{-(17-19)} \, \mathrm{s}^{-1}$


- Unfortunately, simple N_{targ}^2 scaling is wrong
 - Incident wave is too disturbed
- Planets looks as uniform sphere to DM
- Schrödinger eq. with $V(r) = V_0 \Theta(R r)$
 - Coherent effect is now properly included

Real Cross Section

Final Result

- For the best target, we need one order more
 - $\sigma \sim m_{\rm DM}^2 / \Lambda^4$, $\Lambda \sim 10^{13} \, {\rm GeV} \ (m \lesssim 10^{-14} \, {\rm eV})$

