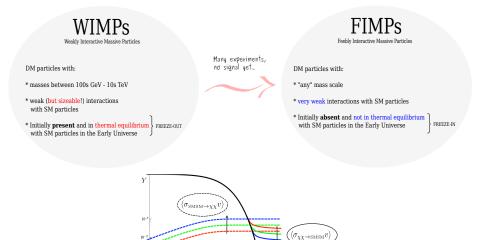
When unification freezes dark matter

Maíra Dutra¹, Yasaman Farzan², Yann Mambrini¹

¹Laboratoire de Physique Théorique d'Orsay (LPT-Orsay), Orsay, France. ²Institute for research in Fundamental Sciences (IPM), Tehran, Iran.

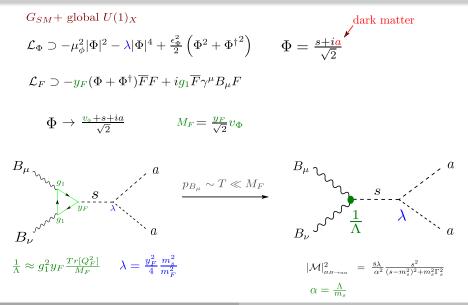


Invisibles Workshop

University of Zurich, Switzerland June 12 - 16, 2017

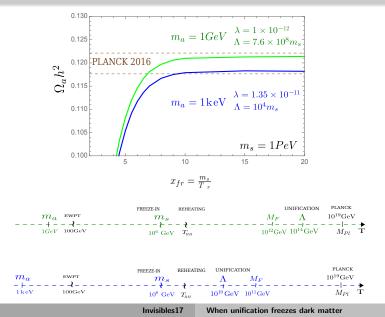
Beyond the WIMP paradigm

Invisibles17

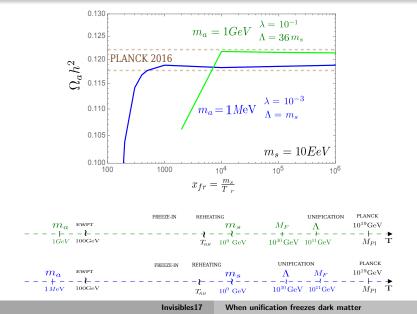

Freeze-In Production of FIMP Dark Matter, Hall, I. J. et al. 10 1007/JHEP03(2010)080

10:

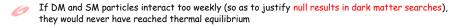
When unification freezes dark matter


x = m/T

A minimal model of FIMP dark matter



Invisibles17 When unification freezes dark matter


Light mediator: $m_s < T_{rh}$

Heavy mediator: $m_s > T_{rh}$

Conclusions and perspectives

 \rightarrow

 If any mechanism suppressed the energy density of dark matter, its relic density may have been produced by the thermal bath (freeze-in mechanism)

We considered a minimal scenario where the smallness of the interaction between the dark and the visible sectors comes from a symmetry wich is broken at some high energy scale

We have found a wide range of dark matter mass which is sensitive to the high energy history of the universe

With free parameters providing a good relic density, we want to:

Imbed our minimal model in realistic GUT scenarios

Further constrain them by considering structure formation requirements and by looking for indirect detection signals