A natural $S_{4} \times S O(10)$ model of flavour

Elena Perdomo ${ }^{1}$

in collaboration with:
Fredrik Björkeroth ${ }^{1}$, Francisco J. de Anda ${ }^{2}$, Stephen F. King ${ }^{1}$
${ }^{1}$ University of Southampton
${ }^{2}$ Tepatitlán's Institute for Theoretical Studies, C.P. 47600, Jalisco, México

June 12, 2017

Motivation

- Flavour problem: The origin of the three families of quarks and leptons with their pattern of masses and mixing.

Motivation

- Flavour problem: The origin of the three families of quarks and leptons with their pattern of masses and mixing.

- Family symmetry:
"Horizontal" unification of SM fermions.

Motivation

- Flavour problem: The origin of the three families of quarks and leptons with their pattern of masses and mixing.

- Family symmetry: "Horizontal" unification of SM fermions.
- Grand Unified Theory:

Unifies fermions within each family and reproduces an universal mass matrix structure.

The model

We propose a natural $S_{4} \times S O(10)$ supersymmetric grand unified theory of flavour.
S_{4} :
$S O(10)$:

The model

We propose a natural $S_{4} \times S O(10)$ supersymmetric grand unified theory of flavour.
S_{4} :

- Enforces CSD(3) vacuum alignments
$S O(10)$:

The model

We propose a natural $S_{4} \times S O(10)$ supersymmetric grand unified theory of flavour.
S_{4} :

- Enforces CSD(3) vacuum alignments
$S O(10)$:
- Predicts right-handed (RH) neutrinos \Longrightarrow type-I seesaw mechanism.

The model

We only allow small Higgs representations 10, 16 and 45.

Field	Representation			
	S_{4}	$S O(10)$	\mathbb{Z}_{4}^{R}	
ψ	3^{\prime}	16	1	Quarks and leptons
$H_{10}^{u, d}$	1	10	0	Break electroweak symmetry
$H_{\overline{16}, 16}^{u}$	1	$\overline{16}$	0	Break $S O(10)$ and give RH neutrino masses
$H_{45}^{X, Y, Z}$	1	45	0	Separate quarks and lepton masses
H_{45}^{B-L}	1	45	2	Gives DT splitting via DW mechanism
ϕ_{i}	3^{\prime}	1	0	Acquire CSD3 vacuum alignments

\mathbb{Z}_{4}^{R} breaks to \mathbb{Z}_{2}^{R}, the usual R parity in the MSSM.

CSD(3) from S_{4}

S_{4} enforces the flavon vacuum alignments

$$
\left\langle\phi_{1}\right\rangle=v_{1}\left(\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right), \quad\left\langle\phi_{2}\right\rangle=v_{2}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \quad\left\langle\phi_{3}\right\rangle=v_{3}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

VEVs driven to scales with the hierarchy

$$
v_{1} \ll v_{2} \ll v_{3} \sim M_{\mathrm{GUT}} .
$$

Yukawa matrices will have an universal structure dictated by CSD(3).

Yukawa Matrices

- Up-type quarks and neutrinos couple to one Higgs H_{10}^{u}, leading to Yukawa matrices $Y_{i j} \sim\left\langle\phi_{i}\right\rangle\left\langle\phi_{j}\right\rangle^{T}$ with an universal structure

$$
Y^{u, \nu}=y_{1}^{u, \nu}\left(\begin{array}{lll}
1 & 1 & 3 \\
1 & 1 & 3 \\
3 & 3 & 9
\end{array}\right)+y_{2}^{u, \nu}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)+y_{3}^{u, \nu}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The right-handed (RH) neutrino mass M^{R} has the same structure as the Y^{ν}.

Yukawa Matrices

- Up-type quarks and neutrinos couple to one Higgs H_{10}^{u}, leading to Yukawa matrices $Y_{i j} \sim\left\langle\phi_{i}\right\rangle\left\langle\phi_{j}\right\rangle^{T}$ with an universal structure

$$
Y^{u, \nu}=y_{1}^{u, \nu}\left(\begin{array}{lll}
1 & 1 & 3 \\
1 & 1 & 3 \\
3 & 3 & 9
\end{array}\right)+y_{2}^{u, \nu}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)+y_{3}^{u, \nu}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The right-handed (RH) neutrino mass M^{R} has the same structure as the Y^{ν}.

- Each matrix is rank 1.

Yukawa Matrices

- Up-type quarks and neutrinos couple to one Higgs H_{10}^{u}, leading to Yukawa matrices $Y_{i j} \sim\left\langle\phi_{i}\right\rangle\left\langle\phi_{j}\right\rangle^{T}$ with an universal structure

$$
Y^{u, \nu}=y_{1}^{u, \nu}\left(\begin{array}{lll}
1 & 1 & 3 \\
1 & 1 & 3 \\
3 & 3 & 9
\end{array}\right)+y_{2}^{u, \nu}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)+y_{3}^{u, \nu}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The right-handed (RH) neutrino mass M^{R} has the same structure as the Y^{ν}.

- Each matrix is rank 1.
- Natural understanding of the hierarchical Yukawa couplings: $y_{u} \sim v_{1}^{2} / M_{\mathrm{GUT}}^{2}, y_{c} \sim v_{2}^{2} / M_{\mathrm{GUT}}^{2}, y_{t} \sim v_{3}^{2} / M_{\mathrm{GUT}}^{2}$.

Yukawa matrices

- Down-type quarks and charged leptons couple to a second Higgs H_{10}^{d}, with a new mixed term involving $Y_{12} \sim\left\langle\phi_{1}\right\rangle\left\langle\phi_{2}\right\rangle^{T}$

$$
Y^{d, e}=y_{12}^{d, e}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 2 & 4 \\
1 & 4 & 6
\end{array}\right)+y_{2}^{d, e}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)+y_{3}^{d, e}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)+y^{P}\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

Yukawa matrices

- Down-type quarks and charged leptons couple to a second Higgs H_{10}^{d}, with a new mixed term involving $Y_{12} \sim\left\langle\phi_{1}\right\rangle\left\langle\phi_{2}\right\rangle^{T}$
$Y^{d, e}=y_{12}^{d, e}\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 6\end{array}\right)+y_{2}^{d, e}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)+y_{3}^{d, e}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)+y^{P}\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 0\end{array}\right)$
- This new term enforces a texture zero in the $(1,1)$ element of Y^{d}, giving the GST relation for the Cabbibo angle, i.e. $\vartheta_{12}^{q} \approx \sqrt{y_{d} / y s}$.

Yukawa matrices

- Down-type quarks and charged leptons couple to a second Higgs H_{10}^{d}, with a new mixed term involving $Y_{12} \sim\left\langle\phi_{1}\right\rangle\left\langle\phi_{2}\right\rangle^{T}$
$Y^{d, e}=y_{12}^{d, e}\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 6\end{array}\right)+y_{2}^{d, e}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)+y_{3}^{d, e}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)+y^{P}\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 0\end{array}\right)$
- This new term enforces a texture zero in the $(1,1)$ element of Y^{d}, giving the GST relation for the Cabbibo angle, i.e. $\vartheta_{12}^{q} \approx \sqrt{y_{d} / y s}$.
- It also leads to a milder hierarchy in the down and charged lepton sectors.

Light neutrino mass matrix

- The light neutrino Majorana matrix, after seesaw, will also have the $\operatorname{CSD}(3)$ structure

$$
m^{\nu}=\mu_{1}^{\nu}\left(\begin{array}{lll}
1 & 1 & 3 \\
1 & 1 & 3 \\
3 & 3 & 9
\end{array}\right)+\mu_{2}^{\nu}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)+\mu_{3}^{\nu}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

where the parameters μ_{i} are given by

$$
\mu_{i}=v_{u}^{2} \frac{\left(y_{i}^{\nu}\right)^{2}}{M_{i}^{R}}
$$

- Flavons yield to normal hierarchy $m_{1} \ll m_{2} \ll m_{3}$.

Numerical fit

- The model accurately fits all available quark and lepton data within 1σ, with a minimum $\chi^{2} \approx 3.4$.
- The $C P$ phase δ^{l} is left as a pure prediction and 2 preferred regions are given by

$$
280.7^{\circ}<\delta^{l}<308.3^{\circ} \quad \text { and } \quad 225.1^{\circ}<\delta^{l}<253.2^{\circ}
$$

- The model predicts significant deviation from both zero and maximal $C P$ violation.

Conclusion

Simple

Natural

Complete

Conclusion

Simple

- Minimal field content.
- Low-dimensional representations.
- $\operatorname{CSD}(3)$ from S_{4}.

Natural

Complete

Conclusion

Simple

- Minimal field content.
- Low-dimensional representations.
- $\operatorname{CSD}(3)$ from S_{4}.

Natural

- "Universal Sequential Dominance".
- $\mathcal{O}(1)$ dimensionless parameters.
- Explains mass hierarchies.

Complete

Conclusion

Simple

- Minimal field content.
- Low-dimensional representations.
- $\operatorname{CSD}(3)$ from S_{4}.

Natural

- "Universal Sequential Dominance".
- $\mathcal{O}(1)$ dimensionless parameters.
- Explains mass hierarchies.

Complete

- Reproduces all available quark and lepton data.
- Doublet-triplet splitting.
- μ term of $\mathcal{O}(\mathrm{TeV})$.
- Acceptable proton decay.

If you want to know more...

A natural $\mathrm{S}_{\mathbf{4}} \times \mathbf{S O}(10)$ model of flavour
(based on arXiv:1705.01555)
Fredrik Bjorkerohh, Francisco J. de Anda, Stephen F King, Elena Perdomo

Motivation	
Flavour problem	Family symmetry
Origin of the three families of quarks and leptons. Very hierar-	A non-Abelizn discrete symmetry imposes constraints on
chical charged fermion masses,	the Yukawa couplinges and re-
small and hierarchical quark	produces precise predictions for
mixing, small neutrino masses	masses and mixing. S_{4} enforres
and large lepton mixing.	$\operatorname{CSD}(3)$.

Grand Unified Theory
Unifies fermions will

Unifies fermions within each family and reproxduces an univeral mass mastrix structure,
predicting relationships between predicting relationships betwet
quark and lopton Yukawa matri quark and lepton Yukawa matri
ces.
elusiles
Southàmprofon

Seesaw mechanism

The night-handed (RH) neutrino mass M^{R} hax the same structure as Y^{v}. The light neutrino mass matrix is obtained by the type-I seesaw mechanism [3,4] and will also have the CSD (3) structure

$$
m^{v}=\mu_{1}^{v}\left(\begin{array}{lll}
1 & 1 & 3 \\
1 & 1 & 3 \\
3 & 3 & 9
\end{array}\right)+\mu_{2}^{v}\left(\begin{array}{llll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)+\mu_{s}^{v}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The parameters μ, are given in terms of the paramesters y_{f}^{y} and M_{i}^{e}
simply by samply by

$$
\mu_{1}=v_{\frac{1}{2}\left(y^{\prime}\right)^{2}}^{M_{1}^{2}}
$$

The flavons yield a light neutrino mass matrix m^{v}, where the nommal The flawons yied a light neutrino mass matrix m^{\prime}, where the nosmal
hierarchy $m_{1}<m_{1} \leqslant m_{1}$ after seesaw is due to the very hierarchical RH neutrino masses.
Doublet-triplet splitting and proton decay

$$
H_{10}^{140}: \quad 10 \rightarrow 2+2+3+3
$$

- Light MSSM doublets at electroneak scale
-Heavy doublets to preserve gauge unification
- Colour triplets of $\sigma\left(M_{\text {GIV }}\right)$ leading to acceptable proton decay (5). -DT spliting Dimopoalos-Wilczek (DW) mechanism [6]
 The triplets maxs matrix has three eigenvalues of $\sigma\left(M_{\text {cunt }}\right)$. Th
doublets mass matrix has two eigenvalues at $\sigma\left(M_{\text {curr }}\right)$ and one at doublets mass matrix has two cigervalues at $\sigma\left(M_{\text {curt }}\right)$ and one at
$\sigma(T e V)$, which we identify with the μ term. $\theta(T \mathrm{CV})$, which we identify with the μ term.

Numerical fit

The model accurately fits all available quark and lepton data, with a mininumm $x^{2}=3.4$ It predicts normal neutrino hierarchy. The $C P$ phase δ^{\prime} is left as a pure prediction and 2 preferred regions are given
$280 . T^{\circ}<\theta^{\prime}<308.3^{\circ}$ and $225.1^{\circ}<\hat{\theta}^{\prime}<253.2^{\circ}$.
The neutrino masses are also predicted
$m_{1} \approx 0.44 \mathrm{meV}, \quad m_{2} \approx 8.68 \mathrm{meV}, \quad m_{2} \approx 50.24 \mathrm{meV}$
The model predicts significant deviation from both zero and maximal $C P$ violation.

Conclusion

simple
Simple
Minimal feld
Minimal fiel
content
Law-dimentasional
representations
$\operatorname{csD}(3)$ from S_{4}

Field Content

Field	Representation										
	S_{4}	$S O(10)$	\mathbb{Z}_{4}	\mathbb{Z}_{4}	\mathbb{Z}_{4}^{R}	Field	Representation				
ψ	3^{\prime}	16	1	1	1		S_{4}	$S O(10)$	\mathbb{Z}_{4}	\mathbb{Z}_{4}	\mathbb{Z}_{4}^{R}
H_{10}^{u}	1	10	0	2	0	$\bar{\chi}_{1}$	1	$\overline{16}$	3	3	1
H_{10}^{d}	1	10	2	0	0	χ_{1}	1	16	0	3	1
$H_{\overline{16}}$	1	$\overline{16}$	2	1	0	$\bar{\chi}_{2}$	1	$\overline{16}$	1	3	1
${ }_{H_{16}}^{H_{Y}}$	1	16	1	2	0	χ_{2}	1	16	2	3	1
$H_{45}^{X, Y}$	1	45	2	1	0	$\bar{\chi}_{3}$	1	$\overline{16}$	1	1	1
H_{45}^{Z} H_{45}^{B-L}	1	45	1	2	0	χ χ	1	16	2	1	1
${ }_{\xi}^{45}$	1	1	2	2	0	χ_{3}^{\prime}	1	16	1	2	1
ϕ_{1}	3^{\prime}	1	0	0	0	χ_{2}^{\prime}	1	16	1	0	1
ϕ_{2}	3^{\prime}	1	2	0	0	ρ	1	1	0	2	1
ϕ_{3}	3^{\prime}	1	2	2	0						

Superpotential

At the GUT scale, the renormalisable Yukawa superpotential is given by

$$
\begin{aligned}
W_{Y}^{(\mathrm{GUT})}= & \psi \phi_{a} \bar{\chi}_{a}+\bar{\chi}_{a} \chi_{a} H_{45}^{Z}+\chi_{a} \chi_{a} H_{10}^{u}+\rho \chi_{3} H_{\overline{16}}+M_{\rho} \rho \rho \\
& +\bar{\chi}_{b} \chi_{b}^{\prime}\left(H_{45}^{X}+H_{45}^{Y}\right)+\chi_{b}^{\prime} \chi_{b}^{\prime} H_{10}^{d}+\chi_{1} \chi_{2} H_{10}^{d},
\end{aligned}
$$

There are also Planck-suppressed terms

$$
W_{Y}^{(\text {Planck })}=\frac{\chi_{a} \chi_{a} H_{\overline{16}} H_{\overline{16}}}{M_{P}}+\frac{\psi \psi \phi_{3} H_{10}^{d}}{M_{P}}
$$

Up-type quarks and Dirac neutrinos

Down-type quarks and charged leptons

Right-handed neutrinos

Analytical estimates

Flavon VEV scales:

$$
v_{1} \approx 0.002 M_{\mathrm{GUT}}, \quad v_{2} \approx 0.05 M_{\mathrm{GUT}}, \quad v_{3} \approx 0.5 M_{\mathrm{GUT}}
$$

Estimated Yukawa couplings:

$$
\begin{aligned}
y_{1}^{u} \sim y_{1}^{\nu} \sim v_{1}^{2} / M_{\mathrm{GUT}}^{2} & \approx 4 \times 10^{-6}, \\
y_{2}^{u} \sim y_{2}^{\nu} \sim y_{2}^{d} \sim y_{2}^{e} \sim v_{2}^{2} / M_{\mathrm{GUT}}^{2} & \approx 2.5 \times 10^{-3}, \\
y_{3}^{u} \sim y_{3}^{\nu} \sim y_{3}^{d} \sim y_{3}^{e} \sim v_{3}^{2} / M_{\mathrm{GUT}}^{2} & \approx 0.25, \\
y_{12}^{d} \sim y_{12}^{e} \sim v_{1} v_{2} / M_{\mathrm{GUT}}^{2} & \approx 1 \times 10^{-4}, \\
y^{P} & \sim v_{3} / M_{P}
\end{aligned} \approx 5 \times 10^{-4} .
$$

Estimated RH neutrino mass parameteres:

$$
M_{1}^{\mathrm{R}} \sim 4 \times 10^{7} \mathrm{GeV}, \quad M_{2}^{\mathrm{R}} \sim 2.5 \times 10^{10} \mathrm{GeV}, \quad M_{3}^{\mathrm{R}} \sim 10^{16} \mathrm{GeV}
$$

Analytical estimates for quark mixing

Strong hierarchy in $Y^{u} \Longrightarrow$ almost all mixing in Y^{d}.
Leading terms in Y^{d} (and ignoring phases):

$$
Y^{d} \approx\left(\begin{array}{ccc}
0 & y_{12}^{d} & y_{12}^{d}-y^{P} \\
y_{12}^{d} & y_{2}^{\prime} & y_{2}^{\prime}+2\left(y_{12}^{d}-y^{P}\right) \\
y_{12}^{d}-y^{P} & y_{2}^{\prime}+2\left(y_{12}^{d}-y^{P}\right) & y_{3}^{d}
\end{array}\right) .
$$

Mixing angles estimated by

$$
\theta_{12}^{q} \approx \frac{Y_{12}^{d}}{Y_{22}^{d}}=\frac{y_{12}^{d}}{y_{2}^{\prime}}, \quad \theta_{13}^{q} \approx \frac{Y_{13}^{d}}{Y_{33}^{d}}=\frac{y_{12}^{d}-y^{P}}{y_{3}^{d}}, \quad \theta_{23}^{q} \approx \frac{Y_{23}^{d}}{Y_{33}^{d}}=\frac{y_{2}^{\prime}+2\left(y_{12}^{d}-y^{P}\right)}{y_{3}^{d}} .
$$

Down-type quark Yukawa eigenvalues

$$
y_{d} \approx\left(y_{12}^{d}\right)^{2} / y_{2}^{\prime}, \quad y_{s} \approx y_{2}^{\prime}, \quad y_{b} \approx y_{3}^{d} .
$$

Analytical estimates for quark mixing

Solving for $y_{12}^{d}, y_{2}^{\prime}$ and y_{3}^{d}, we have

$$
\theta_{12}^{q} \approx \sqrt{\frac{y_{d}}{y_{s}}}, \quad \theta_{13}^{q} \approx \frac{\sqrt{y_{d} y_{s}}-y^{P}}{y_{b}}, \quad \theta_{23}^{q} \approx \frac{y_{s}+2\left(\sqrt{y_{s} y_{d}}-y^{P}\right)}{y_{b}} .
$$

The first equality is exactly the GST relation.
The GUT-scale values ${ }^{\star}$ from observation (with $y^{P}=0$) are

$$
\theta_{12}^{q} \approx 12.85^{\circ}, \quad \theta_{13}^{q} \approx 0.23^{\circ}, \quad \theta_{23}^{q} \approx 1.48^{\circ} .
$$

*assuming no SUSY threshold corrections

Quarks

Observable	Data			Model	
	Central value	1σ range		Best fit	Interval
$\theta_{12}^{q} /{ }^{\circ}$	13.03	$12.99 \rightarrow 13.07$		13.02	$12.94 \rightarrow 13.10$
$\theta_{13}^{q} /{ }^{\circ}$	0.039	$0.037 \rightarrow 0.040$		0.039	$0.036 \rightarrow 0.041$
$\theta_{23}^{q} /{ }^{\circ}$	0.445	$0.438 \rightarrow 0.452$		0.439	$0.426 \rightarrow 0.450$
$\delta^{q} /{ }^{\circ}$	69.22	$66.12 \rightarrow 72.31$		69.21	$63.22 \rightarrow 73.94$
$y_{u} / 10^{-6}$	2.988	$2.062 \rightarrow 3.915$		3.012	$1.039 \rightarrow 4.771$
$y_{c} / 10^{-3}$	1.462	$1.411 \rightarrow 1.512$		1.493	$1.445 \rightarrow 1.596$
y_{t}	0.549	$0.542 \rightarrow 0.556$		0.547	$0.532 \rightarrow 0.562$
$y_{d} / 10^{-5}$	2.485	$2.212 \rightarrow 2.758$		2.710	$2.501 \rightarrow 2.937$
$y_{s} / 10^{-4}$	4.922	$4.656 \rightarrow 5.188$		5.168	$4.760 \rightarrow 5.472$
y_{b}	0.141	$0.136 \rightarrow 0.146$		0.137	$1.263 \rightarrow 1.429$

Leptons

Observable	Data			Model	
	Central value	1σ range		Best fit	Interval
$\theta_{12}^{\ell} /^{\circ}$	33.57	$32.81 \rightarrow 34.32$		33.62	$31.69 \rightarrow 34.46$
$\theta_{13}^{\ell} /^{\circ}$	8.460	$8.310 \rightarrow 8.610$		8.455	$8.167 \rightarrow 8.804$
$\theta_{23}^{\ell} /^{\circ}$	41.75	$40.40 \rightarrow 43.10$		41.96	$39.47 \rightarrow 43.15$
$\delta^{\ell} /{ }^{\circ}$	261.0	$202.0 \rightarrow 312.0$		300.9	$280.7 \rightarrow 308.4$
$y_{e} / 10^{-5}$	1.017	$1.011 \rightarrow 1.023$		1.017	$1.005 \rightarrow 1.029$
$y_{\mu} / 10^{-3}$	2.147	$2.134 \rightarrow 2.160$		2.147	$2.121 \rightarrow 2.173$
$y_{\tau} / 10^{-2}$	3.654	$3.635 \rightarrow 3.673$		3.654	$3.616 \rightarrow 3.692$
$\Delta m_{21}^{2} /\left(10^{-5} \mathrm{eV}^{2}\right)$	7.510	$7.330 \rightarrow 7.690$		7.515	$7.108 \rightarrow 7.864$
$\Delta m_{31}^{2} /\left(10^{-3} \mathrm{eV}^{2}\right)$	2.524	$2.484 \rightarrow 2.564$		2.523	$2.443 \rightarrow 2.605$
m_{1} / meV^{2}				0.441	$0.260 \rightarrow 0.550$
m_{2} / meV				8.680	$8.435 \rightarrow 8.888$
m_{3} / meV					50.24
$\sum m_{i} / \mathrm{meV}$				$49.44 \rightarrow 51.05$	

Input parameters

Parameter	Value
$y_{1}^{u} / 10^{-6}$	3.009
$y_{2}^{u} / 10^{-3}$	1.491
y_{3}^{u}	0.549
$y_{12}^{d} / 10^{-4}$	-1.186
$y_{2}^{d} / 10^{-4}$	6.980
y_{3}^{d}	0.137
$y^{P} / 10^{-4}$	1.243

Parameter	Value
$y_{12}^{e} / 10^{-4}$	1.558
$y_{2}^{e} / 10^{-3}$	2.248
$y_{3}^{e} / 10^{-2}$	3.318
μ_{1} / meV	2.413
μ_{2} / meV	27.50
μ_{3} / meV	2.900

Parameter	Value
α_{d}	0.043π
β_{d}	0.295π
α_{e}	1.692π
β_{e}	1.755π
γ	0.918π
η^{\prime}	1.053π

Pulls

