Neutrinophilic Higgs Doublet Models

Timo J. Kärkkäinen University of Helsinki

timo.j.karkkainen@helsinki.fi

12 June 2017 Invisibles17 Workshop

In collaboration with Katri Huitu, Subhadeep Mondal and Santosh K. Rai. Work in progress.

How do neutrinos acquire their mass?

Neutrino mass is not included in SM!

• Dirac neutrinos: assume weak neutrino Yukawa coupling $(y_{\nu} \lesssim 10^{-11})$ to SM Higgs.

 $m_
u \propto {}_{y_
u} v$

• Seesaw scenario: assume large new physics scale $M \gtrsim 10^{11}$ GeV.

$$m_{\nu} \propto \frac{y_{\nu}^2 v^2}{M}$$

• Third option: assume neutrino mass is generated by a *neutrinophilic* Higgs with small VEV $v_{\nu} \ll v$.

$$m_
u \propto rac{y_
u^2 v_
u^2}{M}$$

Field structure of ν 2HDM

- We introduce an additional Higgs doublet H_{ν} and three right-handed neutrinos $N_{1,2,3}$.
- H_{ν} has the same gauge quantum numbers as the SM Higgs and N is a gauge singlet with respect to SM symmetries.
- How to prevent SM Higgs coupling to N_i and the new Higgs to charged leptons?
 - Introduce \mathbb{Z}_2 parity, where all SM fields are even and H_ν and N odd.
 - Introduce a global $U(1)_X$ symmetry, where H_{ν} and N carry a charge X = 1 and all SM particles are chargeless.