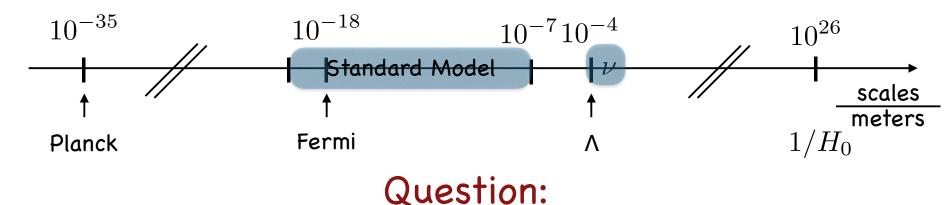
1


The SM Lagrangian (since 1973 in its full content)

$$\begin{aligned} \mathcal{L}_{\sim SM} &= -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\bar{\psi} \not D \psi & (_{\sim}1975\text{-}2000) \\ &+ |D_{\mu}h|^{2} - V(h) & (_{\sim}1990 \text{ -}2012\text{- now}) \\ &+ \psi_{i} \lambda_{ij} \psi_{j} h + h.c. & (_{\sim}2000 \text{ - now}) \end{aligned}$$

In () the approximate dates of the experimental shining of the various lines (at different levels)

The synthetic nature of PP exhibited

 $(\sim 2000 - now)$

- 1: Give the SM for granted and "look elsewhere" or ?
- 2: Keep testing the SM to learn how to complete it

Answer:

the "or" is the problem

reasons of poor understanding and reasons of incompleteness

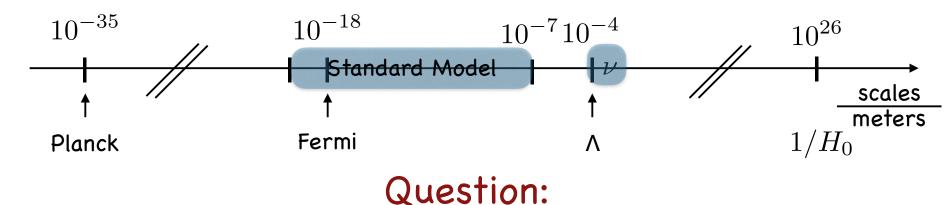
***** No DIRECT EVIDENCES of new RESONANCES

ATLAS SUSY Searches* - 95% CL Lower Limits May 2017

	lav 2017	rcnes	- 957		- LOV			$\sqrt{s} = 7, 8, 13 \text{ TeV}$
IVI	,	e, μ, τ, γ	/ lata	Fmiss	66.446			$\sqrt{s} = 7, 8, 13$ lev Reference
	Model	ε,μ, ι, γ	Jets	L _T	J£ at[10	$\frac{1}{\sqrt{s}}$	$7,8 \text{ TeV} \sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} \tilde{q}\tilde{q}, \tilde{q} \rightarrow \tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} (\text{compressed}) \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{g} \rightarrow q\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g} \rightarrow q\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}$	$\begin{array}{c} 0\text{-}3 \ e, \mu/1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1\text{-}2 \ \tau + 0\text{-}1 \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \end{array}$	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 7-11 jets ℓ 0-2 jets 1 <i>b</i> 2 jets 2 jets	Yes Yes Yes - Yes Yes Yes Yes Yes Yes	20.3 36.1 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3	\$\bar{q}\$.\$\vec{k}\$ 1.85 Te \$\vec{q}\$ 1.57 TeV \$\vec{q}\$ 608 GeV \$\vec{k}\$ 2.02 \$\vec{k}\$ 2.01 \$\vec{k}\$ 2.01 \$\vec{k}\$ 2.01 \$\vec{k}\$ 1.825 Te \$\vec{k}\$ 1.8 Te' \$\vec{k}\$ 2.0 \$\vec{k}\$ 1.65 TeV \$\vec{k}\$ 1.37 TeV \$\vec{k}\$ 900 GeV	$\begin{split} & m(\tilde{k}^{0}_{1})\!<\!200~GeV,~m(1^{st}~gen.~\tilde{\mathfrak{q}})\!=\!m(2^{nd}~gen.~\tilde{\mathfrak{q}}) \\ & m(\tilde{q})\!-\!m(\tilde{k}^{0}_{1})\!<\!5~GeV \\ & m(\tilde{k}^{0}_{1})\!<\!200~GeV \\ & TeV & m(\tilde{k}^{0}_{1})\!<\!200~GeV,~m(\tilde{k}^{-1})\!=\!0.5(m(\tilde{k}^{0}_{1})\!+\!m(\tilde{g})) \\ & m(\tilde{k}^{0}_{1})\!<\!400~GeV \\ & m(\tilde{k}^{0}_{1})\!<\!400~GeV \\ & TeV \\ & rr(NLSP)\!<\!0.1~mm \\ & m(\tilde{k}^{0}_{1})\!\!>\!\!850~GeV,~cr(NLSP)\!<\!0.1~mm,~\mu\!\!>\!0 \\ & m(\tilde{k}^{0})\!\!>\!\!850~GeV,~cr(NLSP)\!<\!0.1~mm,~\mu\!\!>\!0 \\ & m(NLSP)\!\!>\!\!430~GeV \end{split}$	1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290
3 rd gen. ẽ med.	Gravitino LSP $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{\lambda}_{1}^{1}$	0 0-1 <i>e</i> , μ 0-1 <i>e</i> , μ	mono-jet 3 <i>b</i> 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.3 36.1 36.1 20.1	F ^{1/2} scale 865 GeV \$\vec{g}\$ 1.92 T \$\vec{g}\$ 1.97 T \$\vec{g}\$ 1.37 TeV		1502.01518 ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \to b \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \to t \tilde{\chi}_{1}^{+} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \to b \tilde{\chi}_{1}^{+} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \to b \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \to C \tilde{t}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \to C \tilde{t}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (n tarval GMSB) \\ \tilde{t}_{2}\tilde{t}_{2}, \ \tilde{t}_{2} \to \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \ \tilde{t}_{2} \to \tilde{t}_{1} + h \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b	b Yes 2	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	\$\vec{b}_1\$ 950 GeV \$\vec{b}_1\$ 275-700 GeV \$\vec{t}_1\$ 117-170 GeV \$\vec{t}_1\$ 90-198 GeV \$\vec{t}_1\$ 90-323 GeV \$\vec{t}_1\$ 150-600 GeV \$\vec{t}_2\$ 290-790 GeV \$\vec{t}_2\$ 320-880 GeV	$\begin{split} & \mathfrak{m}(\tilde{\chi}_{1}^{0}) < 420 \text{GeV} \\ & \mathfrak{m}(\tilde{\chi}_{1}^{0}) < 200 \text{GeV}, \mathfrak{m}(\tilde{\chi}_{1}^{+}) = \mathfrak{m}(\tilde{\chi}_{1}^{0}) + 100 \text{GeV} \\ & \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 2 \mathfrak{m}(\tilde{\chi}_{1}^{0}), \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ & \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 1 \text{GeV} \\ & \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 5 \text{GeV} \\ & \mathfrak{m}(\tilde{\chi}_{1}^{0}) > 150 \text{GeV} \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{l} \tilde{\ell}_{L_R} \tilde{\ell}_{L_R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell}^+ \ell (\tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell}^- \nu (\tau \tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau (\nu \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_L \nu \tilde{\ell}_L \ell (\tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_L \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 \Lambda \tilde{\chi}_1^0, h \rightarrow b \tilde{h} W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{R}_R \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_1^0 \rightarrow \end{array} $		0 0 	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	$\tilde{x}_1^1, \tilde{x}_2^0$ 1.16 Te $\tilde{x}_1^1, \tilde{x}_2^0$ 580 GeV $\tilde{x}_1^1, \tilde{x}_2^0$ 270 GeV	TeeV	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	$ \begin{array}{c} \mbox{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \mbox{ prod. long-lived } \tilde{\chi}_1^\pm \\ \mbox{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \mbox{ prod. long-lived } \tilde{\chi}_1^\pm \\ \mbox{Stable, stopped } \tilde{g} \mbox{ R-hadron} \\ \mbox{Stable } \tilde{g} \mbox{ R-hadron} \\ \mbox{Mestashe } \tilde{g} \mbox{ R-hadron} \\ \mbox{GMSB, stable } \tilde{\tau}, \tilde{\chi}_1^0 {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \tau(e, \mu) \\ \mbox{GMSB, } \tilde{\chi}_1^0 {\rightarrow} \gamma \tilde{G}, \mbox{ long-lived } \tilde{\chi}_1^0 \\ \tilde{g} \tilde{g}, \tilde{\chi}_1^0 {\rightarrow} eev / e\muv / \mu\muv \\ \mbox{GGM } \tilde{g} \tilde{g}, \tilde{\chi}_1^0 {\rightarrow} 2\tilde{G} \end{array} $	Disapp. trk dE/dx trk 0 trk dE/dx trk $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$ displ. vtx + je	1-5 jets - - - - μμ -	Yes Yes - - Yes - Yes -	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	X ⁺ / ₁ 430 GeV X ⁺ / ₁ 495 GeV B 850 GeV B 850 GeV B 1.58 TeV B 1.57 TeV X ⁰ / ₁ 537 GeV X ⁰ / ₁ 440 GeV X ⁰ / ₁ 1.0 TeV X ⁰ / ₁ 1.0 TeV	$\begin{split} & m(\tilde{x}_1^+)\!\cdot\!m(\tilde{x}_1^0)\!\sim\!160\;MeV,\; \tau(\tilde{x}_1^+)\!=\!0.2\;ns\\ & m(\tilde{x}_1^+)\!\cdot\!m(\tilde{x}_1^0)\!\sim\!160\;MeV,\; \tau(\tilde{x}_1^+)\!<\!15\;ns\\ & m(\tilde{x}_1^0)\!=\!100\;GeV,\;10\;\mus\!<\!\tau(\tilde{x})\!<\!1000\;s\\ & m(\tilde{x}_1^0)\!=\!100\;GeV,\;r>10\;ns\\ & 10\!<\!tan\beta\!<\!50\\ & 1\!<\!\tau(\tilde{x}_1^0)\!<\!3ns,\;SPS8\;model\\ & 7\!<\!\tau(\tilde{x}_1^0)\!<\!3ns,\;SPS8\;model\\ & 7\!<\!\tau(\tilde{x}_1^0)\!<\!30\;mm,\;m(\tilde{x})\!=\!1.3\;TeV\\ & 6\!<\!c\tau(\tilde{x}_1^0)\!<\!480\;mm,\;m(\tilde{x})\!=\!1.1\;TeV \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
APV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \; RPV \; CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow eev, e\mu\nu, \mu\mu\nu \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e\tauv_\tau \\ \tilde{g}_8, \tilde{g} \rightarrow qq \\ \tilde{g}_8, \tilde{g} \rightarrow qq \\ \tilde{g}_8, \tilde{g} \rightarrow qq \\ \tilde{g}_8, \tilde{g} \rightarrow q\bar{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq \\ \tilde{g}_8, \tilde{g} \rightarrow q\bar{\chi}_1, \tilde{\chi}_1^0 \rightarrow qqq \\ \tilde{g}_8, \tilde{g} \rightarrow q\bar{\chi}_1, \tilde{\chi}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell \end{array} $	0 4 1 <i>e</i> ,μ 8	- 0-3 b - 4-5 large- <i>R</i> je 8-10 jets/0-4 8-10 jets/0-4 2 jets + 2 <i>b</i>	iets - 4 <i>b</i> - 4 <i>b</i> -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	\$\vec{v}_r\$ 1.9 T \$\vec{v}_s\$ 1.45 TeV \$\vec{k}_1^+\$ 1.45 TeV \$\vec{k}_1^+\$ 1.14 TeV \$\vec{k}_1^+\$ 1.08 TeV \$\vec{k}_2^-\$ 1.08 TeV \$\vec{k}_2^-\$ 1.55 TeV \$\vec{k}_2^-\$ 2. \$\vec{k}_2^-\$ 1.65 TeV \$\vec{k}_1^-\$ 410 GeV \$\vec{k}_1^-\$ 0.4-1.45 TeV	$\begin{array}{l} \lambda_{311}^{\prime}=0.11,\lambda_{132/133/233}=0.07\\ m(\bar{q})=m(\bar{g}),c_{TLSP}<1\ mm\\ m(\bar{k}_{1}^{0})>400GeV,\lambda_{12k}\neq0(k=1,2)\\ m(\bar{k}_{1}^{0})>0.2\times m(\bar{k}_{1}^{0}),\lambda_{133}\neq0\\ BR(t)=BR(b)=BR(c)=0\%\\ m(\bar{k}_{1}^{0})=R16V)=BR(c)=0\%\\ m(\bar{k}_{1}^{0})=1\ {\rm TeV},\lambda_{112}\neq0\\ m(\bar{k}_{1})=1\ {\rm TeV},\lambda_{123}\neq0\\ BR(\bar{t}_{1}\rightarrow bc/\mu)>20\%\\ \end{array}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-036
*Only pher	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_1^0$ a selection of the available ma nomena is shown. Many of the lified models, c.f. refs. for the a	limits are ba	ased on	Yes es or	20.3 1	ε 510 GeV 0 ⁻¹ 1	m($\tilde{\chi}_1^0)$ <200 GeV Mass scale [TeV]	5

ATLAS Preliminary

w No DIRECT EVIDENCES of new RESONANCES

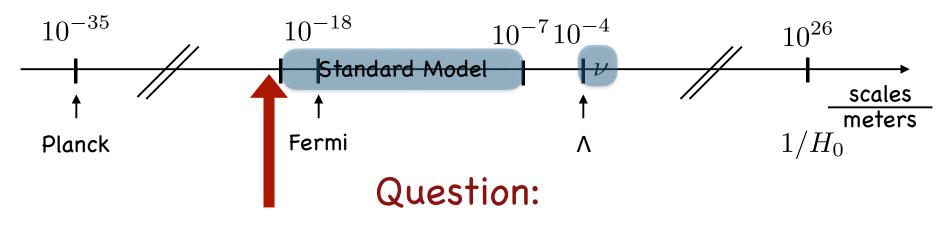

- "Top-down models look increasingly fine tuned" (Rakhi);
- To obtain new information to the "fundamental model" (MSSM, Extended Gauge Sector, etc. etc.) does one need higher energy experiments (100 TeV) ?

NO DIRECT EVIDENCES of new RESONANCES

- "Top-down models look increasingly fine tuned" (Rakhi);
- To obtain new information to the "fundamental model" does one need higher energy experiments (100 TeV) ?

EXPLORING the ENERGY FRONTIERS

- Are we giving up the "naturalness principle" ?
- At what price (TH and EXP) ?

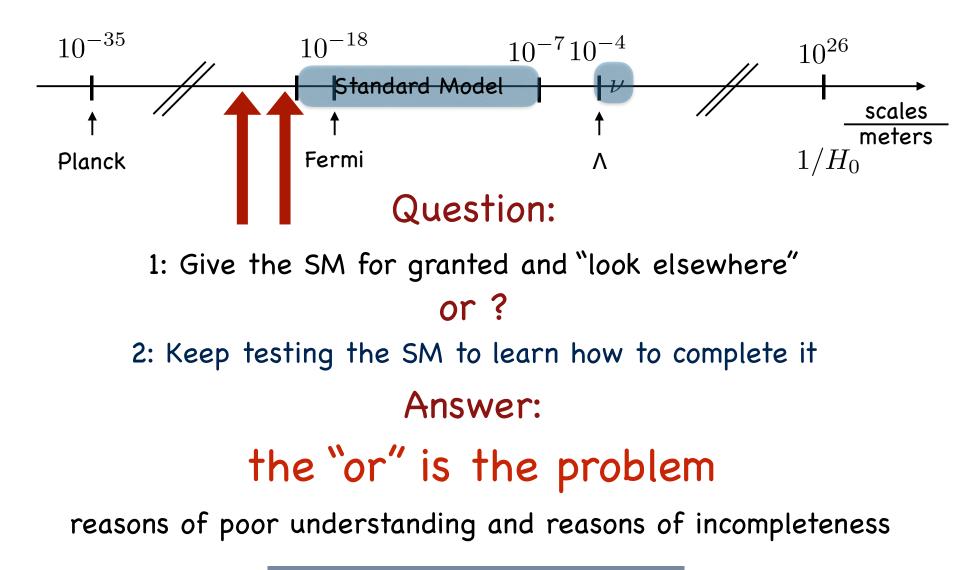


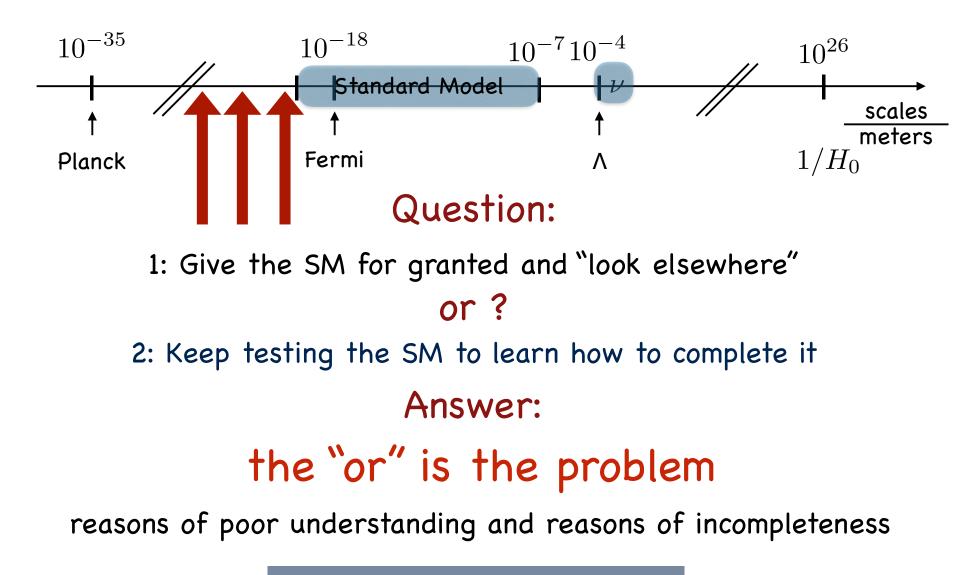
- 1: Give the SM for granted and "look elsewhere" or ?
- 2: Keep testing the SM to learn how to complete it

Answer:

the "or" is the problem

reasons of poor understanding and reasons of incompleteness

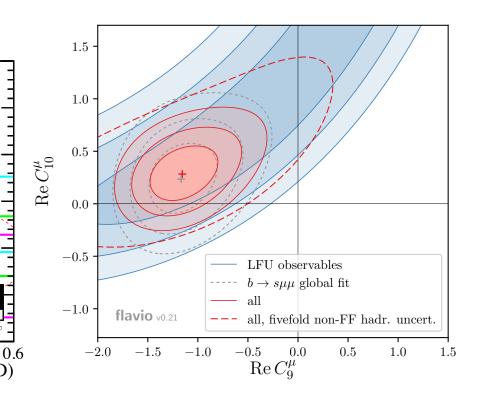

1: Give the SM for granted and "look elsewhere" or ?


2: Keep testing the SM to learn how to complete it

Answer:

the "or" is the problem

reasons of poor understanding and reasons of incompleteness


NO DIRECT EVIDENCES of new RESONANCES

- "Top-down models look increasingly fine tuned" (Rakhi)
- To obtain new information to the "fundamental model" does one need to go to higher energy (100 TeV) ?

\Rightarrow HINTS on LFU violation (Λ =1-2 TeV) ?

the level of 2.4 and 2.5 σ , respectively. y are in good agreement with the recent in [6] that are based on global fits of datas assuming $b \rightarrow see$ decays to be BaBar, PRL109,101802(2012) $\Delta \chi^2 = 1.0 \text{ contours}$ $\Delta \chi^2 = 1.0 \text{ contours}$ pendent effectives happing tonian (app) (2015) arlier model independent studies of R_K). Belles néasurements of LPU observables $\ell^{+}\ell^{-}$ angular distibutions 5 We do ly results on $R_{K(*)}$ from BaBar [44] and , due to their large uncertainties, have HFAG le identify the regions of NP parameter Morion EW 2017 a good description of the experimental $P(\chi^2) = 67.4\%$ now future measurements can lift flat di-R(D)P parameter space and discuss the com- $R_{K(*)}$ measurements with other anomaeson decays. 3.9 σ excess in the $b \to s\ell\ell$ transitions is sufficiently it can be model-independently described Iamiltonian, $\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{SM}} + \mathcal{H}_{\text{eff}}^{\text{NP}}$,

$$V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} \sum_{i,\ell} (C_i^{\ell} O_i^{\ell} + C_i^{\prime \ell} O_i^{\prime \ell}) + \text{h.c.},$$

5.7 σ excess

Semileptonic strange decays

NO DIRECT EVIDENCES of new RESONANCES

- "Top-down models look increasingly fine tuned" (Rakhi)
- To obtain new information to the "fundamental model" (MSSM, Extended Gauge Sector, etc. etc.) one needs to go to higher energy experiments (100 TeV) ?

\Rightarrow HINTS on LFU violation (Λ =1-2 TeV) ?

• Is the global flavour picture consistent or need to be an ad hoc modification of a single operator (b \rightarrow s γ , etc.)?

EXPLORING the INTENSITY FRONTIERS

NO DIRECT EVIDENCES of new RESONANCES

- "Top-down models look increasingly fine tuned" (Rakhi)
- To obtain new information to the "fundamental model" (MSSM, Extended Gauge Sector, etc. etc.) one needs to go to higher energy experiments (100 TeV) ?

☆ HINTS on LFU violation ?

• Is the global flavour picture consistent or need to be an ad hoc modification of a single operator (b \rightarrow s γ , etc.)?

Where is DM in this game ?

Is a WIMP (TeV), an AXION (any) ? Is a PARTICLE ?

Open Questions (High Energy-II)

If

Give up the naturalness principle;

Flavour-Hierarchy Problem uncorrelated;

☆ DM none of the above;

Are we missing the TRUE PARADIGM ?

