Theoretical perspectives on R(D) and $R(D^*)$

Zoltan Ligeti

12–16 June 2017, University of Zurich, Zurich, Switzerland

New physics scale and flavor

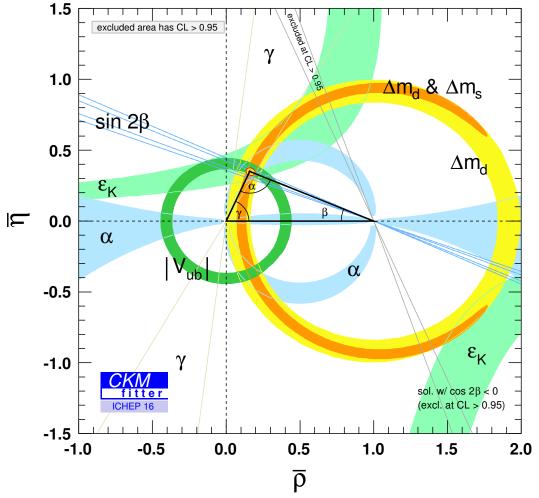
- SM cannot be the full story past theoretical prejudices haven't been confirmed
- Are measures of fine tuning misleading, and NP is order of magnitude heavier?
- New physics at a TeV MFV probably useful approximation to its flavor structure $\$ New physics at 10^{1-2} TeV — less strong flavor suppression, MFV less motivated
- Strong SM suppressions (GIM, CKM, loops, chiral) \Rightarrow sensitive to very high scales

• Future:	(Belle II data set)	(LHCb lifetime)	$\sim rac{(\text{ATLAS \& CMS 3/ab})}{(\text{ATLAS \& CMS now})} \sim 50 - 100$
	(Belle data set)		\sim (ATLAS & CMS now) \sim 30 – 100

 Conservatively: increases in mass scales probed ⁴√50 ~ 2.7 (for dim-6 contributions to *B* decays, *H* couplings, etc.)
 New questions for 100× more data? New theory ideas? Data always motivated theory progress!

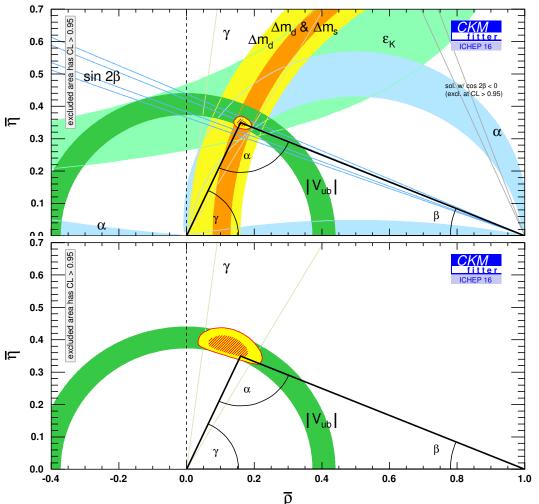
CKM fit: SM vs. NP constraints

- SM dominates CP viol. \Rightarrow KM Nobel
- The implications of the consistency often overstated



CKM fit: SM vs. NP constraints

- SM dominates CP viol. \Rightarrow KM Nobel
- The implications of the consistency often overstated
- Much larger allowed region if the SM is not assumed
- Tree-level (mainly V_{ub} & γ) vs. loopdominated measurements crucial



• In loop (FCNC) processes NP/SM $\sim 20\%$ is still allowed (mixing, $B \to X\ell^+\ell^-$, $X\gamma$, etc.)

Often discussed tensions with the SM

- Intriguing tensions could become the first clear evidence for NP
 - R_K and R_{K^*}
 - R(D) and $R(D^*)$
 - P_5' and other angular distributions
 - $B_s \rightarrow \phi \mu^+ \mu^-$ rate
 - $-(g-2)_{\mu}$
 - ϵ'/ϵ

Only $R(D^{(*)})$ is permissible at in Uisibles — at least one ν in the final state :--) Uncertainties? What if theory uncertainty of hadronic model dependent parts is set to 100%?

• I am working on $R(D^{(*)})$, b/c theory can be improved a lot, indep't of current data What are the smallest deviations from the SM that can be unambiguously established?

Likely lead (at least) to resolving the 20-some yr inclusive / exclusive $\left|V_{cb}\right|$ tension



Use $B \to D^{(*)} l \bar{\nu}$ to refine $B \to D^{(*)} \tau \bar{\nu}$, lattice independent, improvable

[Bernlochner, ZL, Papucci, Robinson, 1703.05330]

MFV models, leptoquarks [Freytsis, ZL, Ruderman, 1506.08896] Suppress $e \& \mu$ instead of enhancing τ ? [Freytsis, ZL, Ruderman, soon] • $B \to D^{**} \ell \bar{\nu}$ in the SM and $R(D^{**})$ [Bernlochner, ZL, 1606.09300.] $B \to D^{**} \ell \bar{\nu}$ for arbitrary new physics [soon] Fully differential distributions [Robinson, ZL, Papucci, 1610.02045] Developing Hammer MC

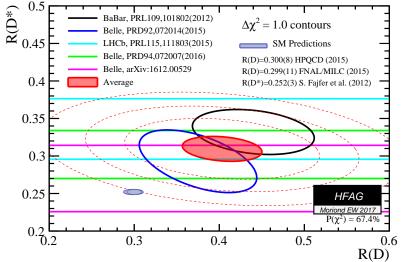
[Bernlochner, Duell, Robinson, ZL, Papucci]

'When you think you can finally forget a topic, it's just about to become important'

The tension with the SM

• BaBar, Belle, LHCb:
$$R(X) = \frac{\Gamma(B \to X\tau\bar{\nu})}{\Gamma(B \to X(e/\mu)\bar{\nu})}$$

 $R(D) = 0.403 \pm 0.047$, $R(D^*) = 0.310 \pm 0.017$
June 5 @ FPCP: LHCb $\tau \to \nu 3\pi$ analysis for $R(D^*)$
 4.1σ from SM predictions — robust due to heavy
quark symmetry + lattice QCD (only *D* so far)

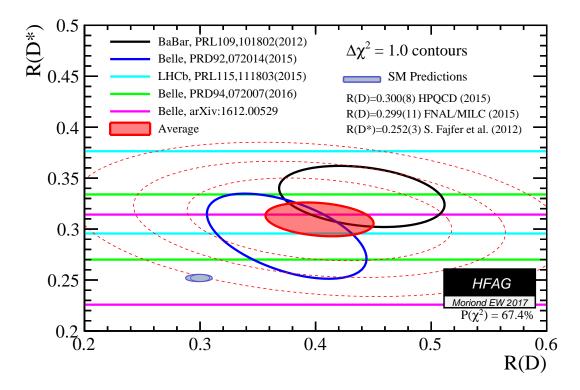


• Tension: $R(D^{(*)})$ vs. $\mathcal{B}(b \to X\tau^+\nu) = (2.41 \pm 0.23)\%$ (LEP) [Freytsis, ZL, Ruderman] SM: $R(X_c) = 0.223 \pm 0.004$ — no $\mathcal{B}(B \to X\tau\bar{\nu})$ measurement since LEP

Imply NP at a fairly low scale (leptoquarks, W', etc.), likely visible at the LHC

- Will become clear one way or another: forthcoming LHCb result + Belle II
- Experimental precision will improve a lot + theory uncertainty also improvable

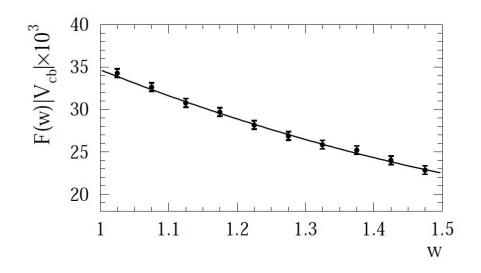
Refining SM predictions

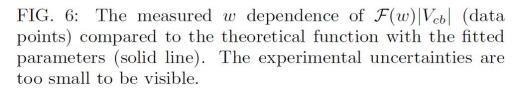


Can it be a theory issue?

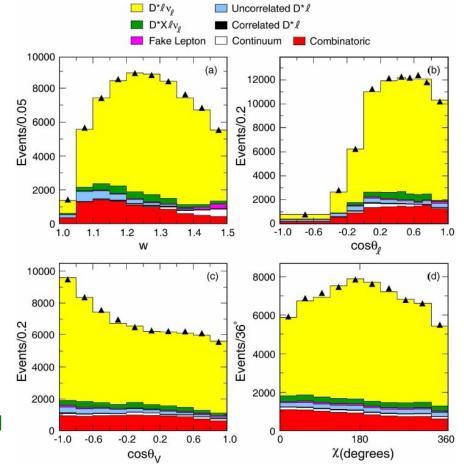
Measured spectra for $e\,\&\,\mu$ final states

• 4 functions: q^2 spectra in $D \& D^* + \text{two } q^2$ -dependent angular distrib. in D^* , $R_{1,2}$ All form factors = Isgur-Wise function $+\Lambda_{\text{QCD}}/m_{c,b} + \alpha_s$ corrections

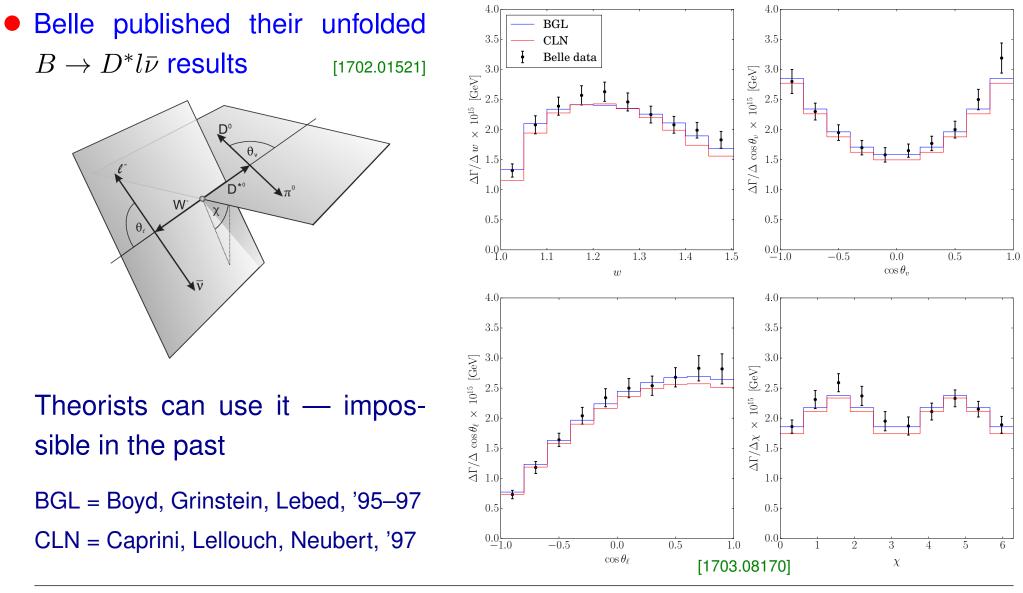




[Plot from BaBar 0705.4008; only Belle unfolded 1510.03657, 1702.01521]



Available for the first time



Basics of $B
ightarrow D^{(*)} \ell ar{
u}$

• Only Lorentz invariance: 6 functions of q^2 , only 4 measurable with e, μ final states

$$\langle D | \bar{c}\gamma^{\mu}b | \overline{B} \rangle = f_{+}(q^{2})(p_{B} + p_{D})^{\mu} + \left[f_{0}(q^{2}) - f_{+}(q^{2}) \right] \frac{m_{B}^{2} - m_{D}^{2}}{q^{2}} q^{\mu}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}b | \overline{B} \rangle = -ig(q^{2}) \epsilon^{\mu\nu\rho\sigma} \varepsilon_{\nu}^{*} (p_{B} + p_{D^{*}})_{\rho} q_{\sigma}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}\gamma^{5}b | \overline{B} \rangle = \varepsilon^{*\mu}f(q^{2}) + a_{+}(q^{2}) (\varepsilon^{*} \cdot p_{B}) (p_{B} + p_{D^{*}})^{\mu} + a_{-}(q^{2}) (\varepsilon^{*} \cdot p_{B}) q^{\mu}$$
Two form factors involving $q^{\mu} = p_{B}^{\mu} - p_{D(*)}^{\mu}$ do not contribute for $m_{l} = 0$
HQET constraints: 6 functions $\Rightarrow 1$ in $m_{c,b} \gg \Lambda_{\rm QCD}$ limit + 3 at $\mathcal{O}(\Lambda_{\rm QCD}/m_{c,b})$

$$\langle D | \bar{c}\gamma^{\mu}b | \overline{B} \rangle = \sqrt{m_{B}m_{D}} \left[h_{+}(v + v')^{\mu} + h_{-}(v - v')^{\mu} \right] \qquad w = v_{B} \cdot v'_{D(*)}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}\phi^{5}b | \overline{B} \rangle = i\sqrt{m_{B}m_{D^{*}}} h_{V} \varepsilon^{\mu\nu\alpha\beta} \epsilon_{\nu}^{*}v'_{\alpha}v_{\beta}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}\gamma^{5}b | \overline{B} \rangle = \sqrt{m_{B}m_{D^{*}}} \left[h_{A_{1}}(w + 1)\epsilon^{*\mu} - h_{A_{2}}(\epsilon^{*} \cdot v)v^{\mu} - h_{A_{3}}(\epsilon^{*} \cdot v)v'^{\mu} \right]$$

 $m_{c,b} \gg \Lambda_{\text{QCD}}$ limit: $h_+ = h_V = h_{A_1} = h_{A_3} = \xi(w)$ and $h_- = h_{A_2} = 0$

• Constrain all 4 functions from $B \to D^{(*)} l \bar{\nu} \Rightarrow \mathcal{O}(\Lambda_{\text{QCD}}^2/m_{c,b}^2, \alpha_s^2)$ uncertainties

Form factor expansion details

• Expand form factors to order $\varepsilon_{c,b} = \Lambda_{\rm QCD}/(2m_{c,b})$ and α_s (new results for tensor ff)

$$f_i(w) = \xi(w) \left[1 + \varepsilon_c f_i^{(c,1)}(w) + \varepsilon_b f_i^{(b,1)}(w) + \alpha_s f_i^{(lpha_s)}\left(rac{m_c}{m_b}, w
ight) + \mathcal{O}(arepsilon_{c,b}^2, lpha_s^2)
ight]$$

Absorbed $\xi(w) \to \xi(w) + 2(\varepsilon_c + \varepsilon_b)\chi_1(w)$, so only $\chi_{2,3}$ and $\eta = \xi_3/\xi$ remain

Known for SM terms since the early 90s, but not written down for others before

The $\alpha_s \varepsilon_{c,b}$ terms are known, should be included if NP established Expect that fit readjusts subleading Isgur-Wise functions \Rightarrow modest impacts

• $\chi_{2,3} \& \eta$ calculated in QCD sum rules — parametrize: [ZL, Neubert, Nir, '92–93] 1/m Lagrangian: $\hat{\chi}_2^{\text{ren}}(1) = -0.06 \pm 0.02$ $\hat{\chi}_2'^{\text{ren}}(1) = 0 \pm 0.02$ $\hat{\chi}_3'^{\text{ren}}(1) = 0.04 \pm 0.02$ 1/m current: $\eta(1) = 0.62 \pm 0.2$, $\eta'(1) = 0 \pm 0.2$ (Luke's thm. $\Rightarrow \hat{\chi}_3(1) = 0$)

Central values match what CLN used, these uncertainties > in original papers

Inputs and $|V_{cb}|$ fits

- Lattice QCD: $B \rightarrow D$ at w = 1, 1.08, 1.16 $B \rightarrow D^*$ at w = 1
- Analyticity-based constraints on shapes of form factors
 BGL: no HQET relations in parametrization, treat 3 form factors as unrelated
 CLN: use HQET + QCD sum rules for O(Λ_{QCD}/m_{c,b}), no uncertainties assigned more caveats in practical implementations
- Fewer fit parameters in CLN, used by all experimental measurements since '97 Used also in theory papers (except lattice) to derive SM predictions for $R(D^{(*)})$

Bigi, Gambino, Schacht, 1703.06124, $|V_{cb}|_{BGL} = (41.7^{+2.0}_{-2.1}) \times 10^{-3}$ Grinstein & Kobach, 1703.08170, $|V_{cb}|_{BGL} = (41.9^{+2.0}_{-1.9}) \times 10^{-3}$ Belle, 1702.01521, $|V_{cb}|_{CLN} = (37.4 \pm 1.3) \times 10^{-3}$ (38.2 ± 1.5 in 1703.06124)

Consider 7 different fit scenarios

- All calculations of subleading $\Lambda_{QCD}/m_{c,b}$ Isgur-Wise functions model dependent Only R(D) calculated in LQCD — all others did not include uncertainties properly
- Theory [CLN] & exp papers: $R_{1,2}(w) = \underbrace{R_{1,2}(1)}_{\text{fit}} + \underbrace{R'_{1,2}(1)}_{\text{fixed}}(w-1) + \underbrace{R''_{1,2}(1)}_{\text{fixed}}(w-1)^2/2$ In HQET: $R_{1,2}(1) = 1 + \mathcal{O}(\Lambda_{\text{QCD}}/m_{c,b}, \alpha_s)$ $R_{1,2}^{(n)}(1) = 0 + \mathcal{O}(\Lambda_{\text{QCD}}/m_{c,b}, \alpha_s)$

Sometimes calculations using QCD sum rule predictions for $\Lambda_{
m QCD}/m_{c,b}$ corrections are called the HQET predictions

Our fits:				Lattice C	Pollo Doto	
	Fit	QCDSR	$\mathcal{F}(1)$	$f_{+,0}(1)$	$f_{+,0}(w > 1)$	Belle Data
	$L_{w=1}$		+	+	_	+
	$L_{w=1}+SR$	+	+	+	_	+
	NoL	—	—	—	—	+
	NoL+SR	+	_			+
	$L_{w\geq 1}$	_	+	+	+	+
		+	+	+	+	+
	th:L $_{w\geq 1}$ +SR	+	+	+	+	

Aside: Fit details

• Standard choice to minimize range of expansion param' z_* in unitarity constraints:

$$z_*(w) = \frac{\sqrt{w+1} - \sqrt{2} a}{\sqrt{w+1} + \sqrt{2} a}, \qquad a = \left(\frac{1+r_D}{2\sqrt{r_D}}\right)^{1/2}$$

Parametrize similar to CLN — wanted to start with fit comparable to prior results

$$\frac{\mathcal{G}(w)}{\mathcal{G}(w_0)} \simeq 1 - 8a^2\rho_*^2 z_* + \left(V_{21}\rho_*^2 - V_{20}\right)z_*^2$$

Translate this to $\xi(w)/\xi(w_0)$ to be able to simultaneously fit $B \to D$ and $B \to D^*$

Uncertainty in z_*^2 term may be sizable — we checked that fit results are stable if constraint between the slope and the curvature is relaxed

Keep uncertainties and correlations in form factor ratios ($\Lambda_{\rm QCD}/m$ Isgur-Wise fn's)

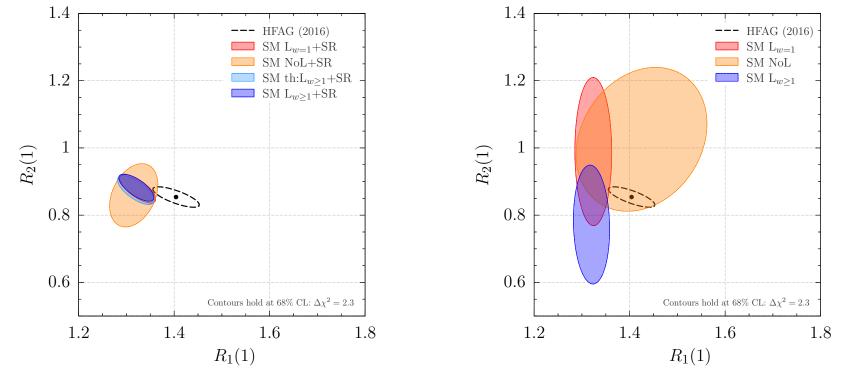
• In progress: study systematically orders/constraints in fit, HQET corrections, etc.

ZL – p. 12

Experimental inputs and self-consistency

Experimental inputs: $B \to Dl\bar{\nu}$: $d\Gamma/dw$ (Only Belle published fully corrected distributions) $B \to D^* l\bar{\nu}$: $d\Gamma/dw$, $R_1(w)$, $R_2(w)$

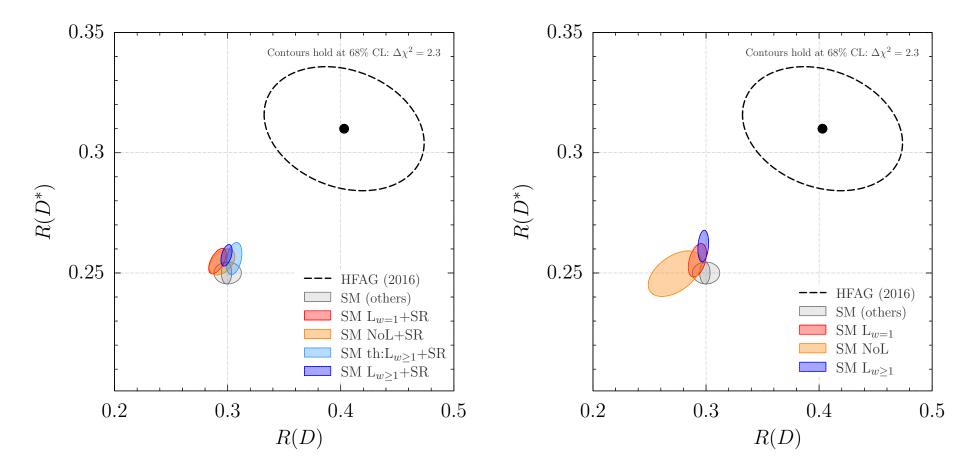
Model-dependent inputs in SM predictions for $R_{1,2}$ in all exp. fits & theory papers



Mild tension for $R_1(1)$ — may affect $|V_{cb}|$ from $B \to D^{(*)} l\bar{\nu}$, long standing issues In 1S scheme: $R_1(1) \simeq 1.34 - 0.12 \eta(1)$, $R_2(1) \simeq 0.98 - 0.42 \eta(1) - 0.54 \hat{\chi}_2(1)$

Our SM predictions for R(D) and $R(D^*)$

Significance of the tension is (surprisingly) stable across our fit scenarios:



Fit just a quadratic polynomial in z_* : consistent results

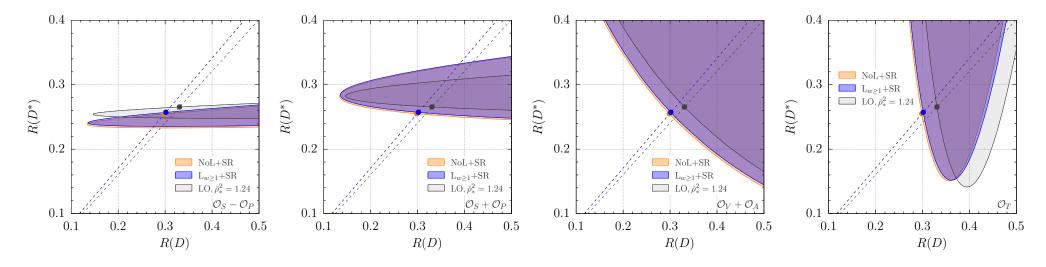
Small variations: heavy quark symmetry & phase space leave little wiggle room

Scenario	$R(D) R(D^*)$		Correlation
$L_{w=1}$	0.292 ± 0.005	0.255 ± 0.005	41%
$L_{w=1} {+} SR$	0.291 ± 0.005	0.255 ± 0.003	57%
NoL	0.273 ± 0.016	0.250 ± 0.006	49%
NoL+SR	0.295 ± 0.007	0.255 ± 0.004	43%
$L_{w\geq 1}$	0.298 ± 0.003	0.261 ± 0.004	19%
$L_{w\geq 1} + SR$	0.299 ± 0.003	0.257 ± 0.003	44%
th: $L_{w \ge 1} + SR$	0.306 ± 0.005	0.256 ± 0.004	33%
Data [HFAG]	0.403 ± 0.047	0.310 ± 0.017	-23%
Lattice [FLAG]	0.300 ± 0.008		_
Bigi, Gambino '16	0.299 ± 0.003	—	—
Fajfer et al. '12		0.252 ± 0.003	—

• Tension between our " $L_{w\geq 1}$ +SR" fit and data is 3.9 σ , with *p*-value = 11.5×10^{-5} (close to HFAG: 3.9σ , with *p*-value = 8.3×10^{-5})

Impact on new physics effects

• Add only one NP operator to the SM at a time: $O_S - O_P$, $O_S + O_P$, $O_V + O_A$, O_T



- Not all 1/m corrections in literature, some O(1/m) form factors had 100% uncert.
 (i.e., tensor currents vanishing in heavy quark limit)
- Shifts from gray regions non-negligible if one seriously wanted to fit a NP model

New physics options

Consider fits to redundant set of operators

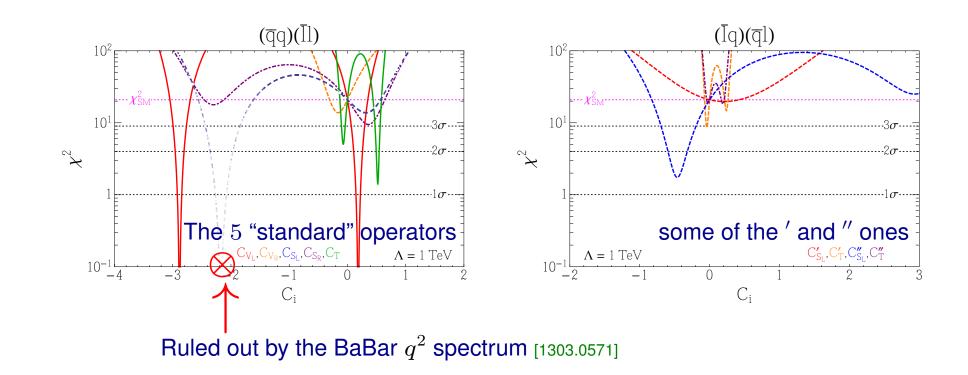
• Likely tree-level: different fermion orderings convenient to understand mediators

Usually only the first 5 operators considered, related by Fierz

from dim-6 terms, others from dim-8 only $\downarrow \downarrow$

					V
8	Operator		Fierz identity	Allowed Current	$\delta \mathcal{L}_{ ext{int}}$
\mathcal{O}_{V_L}	$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$			$(1,3)_0$	$(g_q ar q_L oldsymbol{ au} \gamma^\mu q_L + g_\ell ar \ell_L oldsymbol{ au} \gamma^\mu \ell_L) W'_\mu$
\mathcal{O}_{V_R}	$(\bar{c}\gamma_{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$			82 - 275 - 58e	
\mathcal{O}_{S_R}	$(\bar{c}P_Rb)(\bar{\tau}P_L\nu)$				$(\lambda - I) (+ \lambda - I) = (1 + \lambda - I) = (1 + \lambda - I)$
\mathcal{O}_{S_L}	$(\bar{c}P_Lb)(\bar{\tau}P_L\nu)$			$(1,2)_{1/2}$	$(\lambda_d \bar{q}_L d_R \phi + \lambda_u \bar{q}_L u_R i \tau_2 \phi^\dagger + \lambda_\ell \bar{\ell}_L e_R \phi)$
\mathcal{O}_T	$(\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu)$				
\mathcal{O}'_{V_L}	$(\bar{\tau}\gamma_{\mu}P_{L}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	\mathcal{O}_{V_L}	$(3,3)_{2/3}$	$\lambdaar{q}_Loldsymbol{ au}\gamma_\mu\ell_Loldsymbol{U}^\mu$
\mathcal{O}_{V_L}	$(1 \mu L L) (C \Gamma L L)$	<u>a</u> 14	\mathbb{C}_{V_L}	\(0,1)	$(\lambda - \ell + \tilde{\lambda} - \tilde{\lambda})$
\mathcal{O}'_{V_R}	$(\bar{\tau}\gamma_{\mu}P_{R}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$\rangle^{(3,1)_{2/3}}$	$(\lambda \bar{q}_L \gamma_\mu \ell_L + \tilde{\lambda} \bar{d}_R \gamma_\mu e_R) U^\mu$
\mathcal{O}_{S_R}'	$(\bar{ au}P_Rb)(\bar{c}P_L u)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{V_R}$		
\mathcal{O}_{S_L}'	$(\bar{\tau}P_Lb)(\bar{c}P_L\nu)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{S_L} - \frac{1}{8}\mathcal{O}_T$	$(3,2)_{7/6}$	$(\lambdaar{u}_R\ell_L+ ilde{\lambda}ar{q}_Li au_2e_R)R$
\mathcal{O}'_T	$(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu)$	\longleftrightarrow	$-6\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$	2	
\mathcal{O}_{V_L}''	$(\bar{\tau}\gamma_{\mu}P_{L}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L} u)$	\longleftrightarrow	$-\mathcal{O}_{V_R}$		
$\mathcal{O}_{V_R}^{\prime\prime}$	$(\bar{\tau}\gamma_{\mu}P_{R}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L} u)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$(\bar{3},2)_{5/3}$	$(\lambda ar{d}_R^c \gamma_\mu \ell_L + ilde{\lambda} ar{q}_L^c \gamma_\mu e_R) V^\mu$
\mathcal{O}_{S_R}''	$(\bar{ au}P_Rc^c)(\bar{b}^cP_L u)$	\longleftrightarrow	$\frac{1}{2}\mathcal{O}_{V_L}\Big\langle$	$(\bar{3},3)_{1/3}$	$\lambdaar{q}_L^{ m c} i au_2 oldsymbol{ au} \ell_L oldsymbol{S}$
\mathcal{O}_{S_L}''	$(\bar{\tau}P_Lc^c)(\bar{b}^cP_L\nu)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{S_L} + \frac{1}{8}\mathcal{O}_T$	$(\bar{3},1)_{1/3}$	$(\lambda \bar{q}_L^c i au_2 \ell_L + \tilde{\lambda} \bar{u}_R^c e_R) S$
\mathcal{O}_T''	$(\bar{\tau}\sigma^{\mu\nu}P_Lc^c)(\bar{b}^c\sigma_{\mu\nu}P_L\nu)$	\longleftrightarrow	$-6\mathcal{O}_{SL} - \frac{1}{2}\mathcal{O}_T$		[Freytsis, ZL, Ruderman, 1506.088

Fits to a single operator

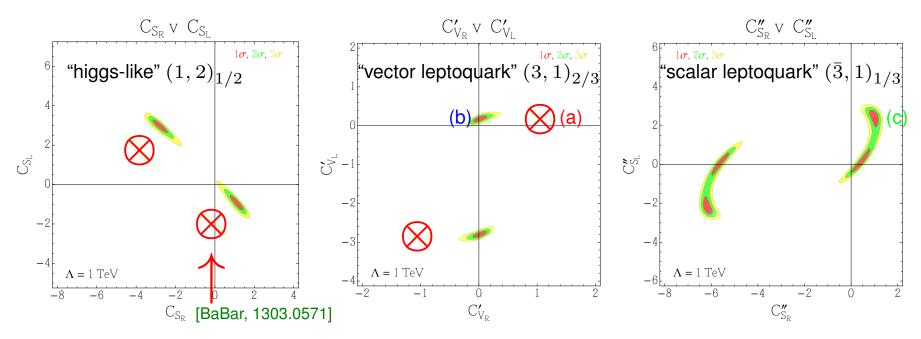


• Large coefficients, $\Lambda = 1 \text{ TeV}$ in plots \Rightarrow fairly light mediators (obvious: 20–30% of a tree-level rate)

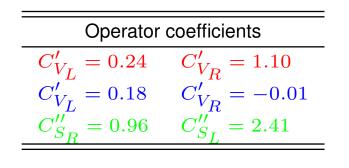
In HQET limit, we confirmed the "classic" paper

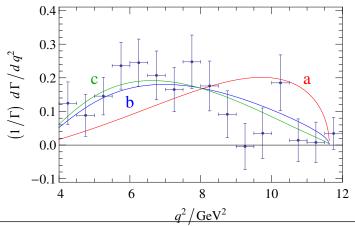
[Goldberger, hep-ph/9902311]

Fits to two operators



The \bigotimes solution are ruled out by the q^2 spectrum





Operator fits \rightarrow **viable MFV models?**

• Good fits for several mediators: scalar, "Higgs-like" $(1,2)_{1/2}$ vector, "W'-like" $(1,3)_0$ "scalar leptoquark" $(\overline{3},1)_{1/3}$ or $(\overline{3},3)_{1/3}$ "vector leptoquark" $(3,1)_{2/3}$ or $(3,3)_{2/3}$

We did not try to fit any of the other anomalies simultaneously

• Which BSM scenarios can be MFV? [Freytsis, ZL, Ruderman, 1506.08896] Viable leptoquarks: scalar $S(1, 1, \overline{3})$ or vector $U_{\mu}(1, 1, 3)$

Bounds: $b \to s \nu \bar{\nu}$, $D^0 \& K^0$ mixing, $Z \to \tau^+ \tau^-$, LHC contact int., $pp \to \tau^+ \tau^-$, etc.

In this case there is no $bb\tau\tau$ coupling

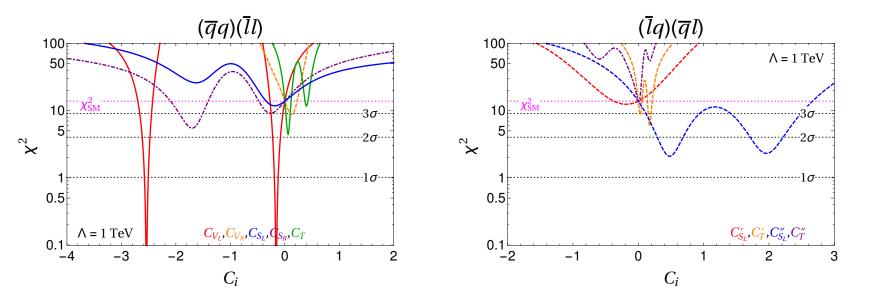
[See Greljo's talk yesterday for many other options]

How odd scenarios may be viable?

• All papers enhance the au mode compared to the SM

Can one suppress the e and μ modes instead?

[Freytsis, ZL, Ruderman, to appear]



Unique viable option: modify the SM four-fermion operator

Good fit with: $V_{cb}^{(\mathrm{exp})} \sim V_{cb}^{(\mathrm{SM})} \times 0.9$ $V_{ub}^{(\mathrm{exp})} \sim V_{ub}^{(\mathrm{SM})} \times 0.9$

• Many relevant constraints, some of the strongest from ϵ_K and B mixing

What about $e - \mu$ (non)universality?

• How well is the difference of the e and μ rates constrained?

Parameters	De sample	$D\mu$ sample	combined result
$\frac{\rho_D^2}{\rho_{D^*}^2}$	$1.22 \pm 0.05 \pm 0.10$	$1.10 \pm 0.07 \pm 0.10$	$1.16 \pm 0.04 \pm 0.08$
$ ho_{D^*}^2$	$1.34 \pm 0.05 \pm 0.09$	$1.33 \pm 0.06 \pm 0.09$	$1.33 \pm 0.04 \pm 0.09$
R_1	$1.59 \pm 0.09 \pm 0.15$	$1.53 \pm 0.10 \pm 0.17$	$1.56 \pm 0.07 \pm 0.15$
R_2	$0.67 \pm 0.07 \pm 0.10$	$0.68 \pm 0.08 \pm 0.10$	$0.66 \pm 0.05 \pm 0.09$
$\mathcal{B}(D^0\ell\overline{ u})(\%)$	$2.38 \pm 0.04 \pm 0.15$	$2.25 \pm 0.04 \pm 0.17$	$2.32 \pm 0.03 \pm 0.13$
$\mathcal{B}(D^{*0}\ell\overline{\nu})(\%)$	$5.50 \pm 0.05 \pm 0.23$	$5.34 \pm 0.06 \pm 0.37$	$5.48 \pm 0.04 \pm 0.22$
χ^2 /n.d.f. (probability)	416/468 (0.96)	488/464 (0.21)	2.0/6 (0.92)

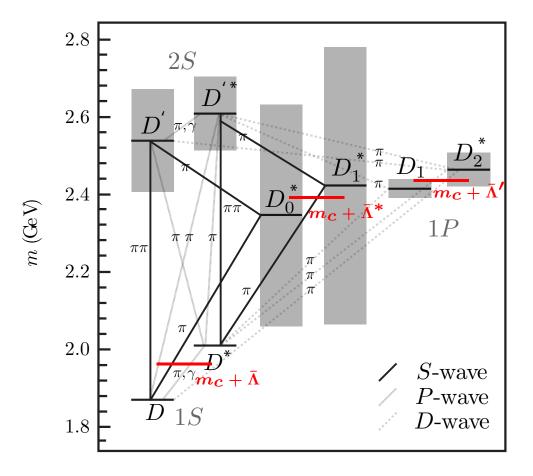
[BaBar, 0809.0828 — similar results in Belle, 1010.5620]

- 10% difference allowed... some wrong statements... r
- How much better can difference be constrained?

Reaching the 1% level on ratio might be possible (but challenging) at Belle II

Γ_1	$e^+ u_e$ anything	$(10.86 \pm 0.16)\%$
Γ_2	$\overline{p}e^+ u_e$ anything	$< 5.9 imes 10^{-4}$
Γ_3	$\mu^+ u_\mu$ anything	$(10.86 \pm 0.16)\%$
Γ_4	$\ell^+ u_\ell$ anything	$(10.86 \pm 0.16)\%$

$$B o D^{**} au ar
u$$



Particle	$s_l^{\pi_l}$	J^P	m (MeV)	Γ (MeV)
D_0^*	$\frac{1}{2}^{+}$	0^+	2330	270
D_1^*	$\frac{1}{2}^+$	1^+	2427	384
D_1	$\frac{3}{2}^{+}$	1^{+}	2421	34
 D_2^*	$\frac{3}{2}^{+}$	2^{+}	2462	48

Parameter	$\bar{\Lambda}$	$\bar{\Lambda}'$	$\bar{\Lambda}^*$
Value [GeV]	0.40	0.80	0.76

Why bother...?

• $B \to D^{**} \tau \bar{\nu}$: rates to narrow D_1, D_2^* measurable? No predictions

In $B_s \to D_s^{**} \ell \bar{\nu}$ case, all $4 D_s^{**}$ states are narrow \Rightarrow LHCb?

	-			
		R(D) [%]	$R(D^{*})$ [%]	Correlation
	$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.04
• Largest syst. uncertainty in $R(D^{(*)})$	D^{**} composition	1.3	3.0	-0.63
• Largest syst. anothanity in $I(D)$	Fake D yield	0.5	0.3	0.13
	Fake ℓ yield	0.5	0.6	-0.66
 May matter for tensions between inclu- 	D_s yield	0.1	0.1	-0.85
aive and evolutive $ \mathbf{U} $ and $ \mathbf{U} $ deter	Rest yield	0.1	0.0	-0.70
sive and exclusive $ V_{cb} $ and $ V_{ub} $ deter-	Efficiency ratio f^{D^+}	2.5	0.7	-0.98
minations	Efficiency ratio f^{D^0}	1.8	0.4	0.86
minatione	Efficiency ratio $f_{\text{eff}}^{D^{*+}}$	1.3	2.5	-0.99
Complementary consitivity to NP	Efficiency ratio $f_{\text{eff}}^{D^{*0}}$	0.7	1.1	0.94
Complementary sensitivity to NP	CF double ratio g^+	2.2	2.0	-1.00
	CF double ratio g^0	1.7	1.0	-1.00
Complementary experimentally	Efficiency ratio $f_{\rm wc}$	0.0	0.0	0.84
	$M_{\rm miss}^2$ shape	0.6	1.0	0.00
	$o'_{\rm NB}$ shape	3.2	0.8	0.00
Decay rates not too small	Lepton PID efficiency	0.5	0.5	1.00
	Total	7.1	5.2	-0.32

[Belle, 1507.03233]

Some model independent results

• At $w \equiv v \cdot v' = 1$, the $O(\Lambda_{QCD}/m_{c,b})$ matrix element is determined by masses and leading order Isgur-Wise function [Leibovich, ZL, Stewart, Wise, hep-ph/9703213, hep-ph/9705467]

Kinematic range: $1 \leq w \lesssim 1.3$ and in the τ case $1 \leq w \lesssim 1.2$

Meson masses:
$$m_{H_{\pm}} = m_Q + \bar{\Lambda}^H - \frac{\lambda_1^H}{2m_Q} \pm \frac{n_{\mp} \lambda_2^H}{2m_Q} + \dots \qquad n_{\pm} = 2J_{\pm} + 1$$

For example:

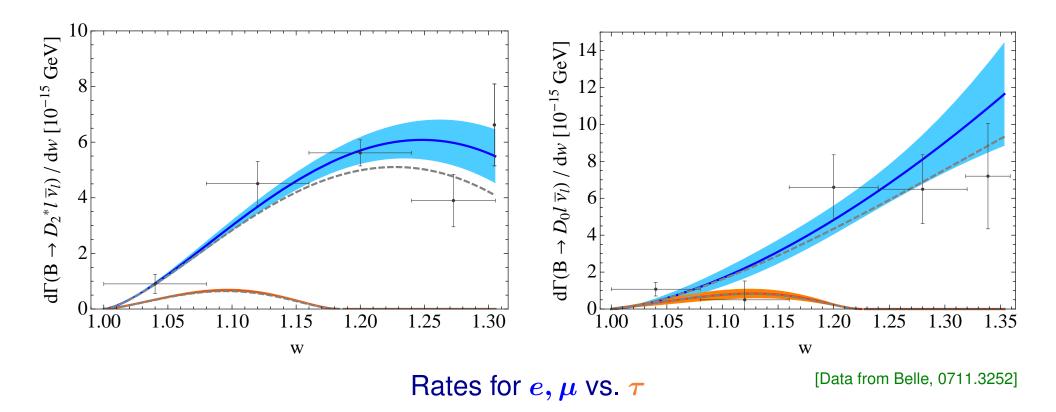
$$\frac{\langle D_1(v',\epsilon)|V^{\mu}|B(v)\rangle}{\sqrt{m_{D_1}m_B}} = f_{V_1}\epsilon^{*\mu} + (f_{V_2}v^{\mu} + f_{V_3}v'^{\mu})(\epsilon^* \cdot v)$$

$$\sqrt{6} f_{V_1}(w) = (1 - w^2) \tau(w) - 4 \frac{\bar{\Lambda}' - \bar{\Lambda}}{m_c} \tau(w) + \mathcal{O}\left(\frac{w - 1}{m_{c,b}}\right) + \dots$$

• These "known" $\mathcal{O}(\Lambda_{\rm QCD}/m_{c,b})$ terms are numerically very important

• No expressions in the literature for $B \to D^{**} \tau \bar{\nu}$ rates at all — fixing this...

Predictions for spectra



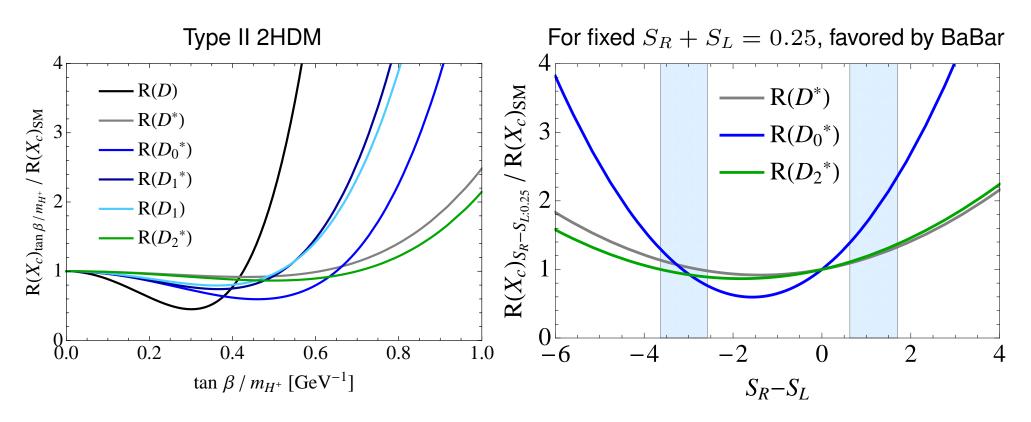
Study all uncertainties, including effects neglected in LLSW

• As for $B \to D^{(*)} \ell \bar{\nu}$, heavy quark symmetry relates the extra form factor in the τ mode to those with e, μ — finalizing the uncertainties

Complementary sensitivities to NP

Complementary sensitivities

[Bernlochner & ZL, 1606.09300]



Different patterns in two blue bands

2HDM just for illustration — explore influence of all possible non-SM operators

Final comments

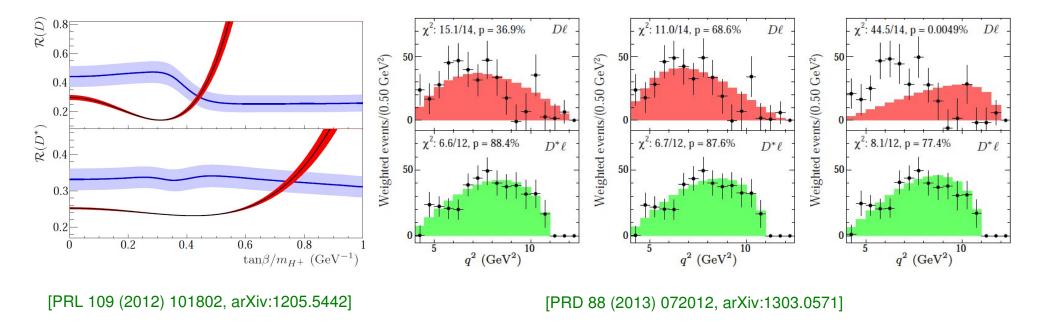
Conclusions

- $B \to D^{(*)}\tau\bar{\nu}$: amusing if NP shows up in an operator w/o much SM suppression
- SM predictions can be systematically improved with more data
- There are good operator fits, and (somewhat) sensible MFV leptoquark models (Fairly wild scenarios still viable)
- Measurements will improve in the next decade by nearly an order of magnitude (Even if central values change, plenty of room for significant deviations from SM)
- More theory progress to come, will impact measurements and sensitivity to BSM

Bonus slides

BaBar statements from q^2 spectrum results

BaBar studied consistency of rates with 2HDM, and ${ m d}\Gamma/{ m d}q^2$ with several models



- Found that type-II 2HDM gave nearly as bad fit to the data as the SM
- $d\Gamma/dq^2$ has additional discriminating power (no other distribution measured yet)
- No public info on bin-to-bin correlations, eyeball which solutions are (dis)favored

Survey of MFV model

- Scalars: Need $C_{S_L}/C_{S_R} \sim \mathcal{O}(1)$ Hard to avoid y_c suppression or $\mathcal{O}(1)$ coupling to 1st generation
- Vectors: Rescaling the SM operator (O_{V_L}) gives good fit to the data Flavor singlet excluded by LHC, simplest charges don't work w/o assumptions If dynamics allows $W'\bar{Q}_L^3 Q_L^3$, but not $W'\bar{Q}_L^i Q_L^i$, viable models exist; beyond MFV [Greljo, Isidori, Marzocca, 1506.0170]
- Leptoquarks: Viable MFV models exist

• Possibly viable: $S(\mathbf{1}, \mathbf{1}, \mathbf{\overline{3}})$ and $U_{\mu}(\mathbf{1}, \mathbf{1}, \mathbf{3}) \Rightarrow$ consider in more detail

Both can be electroweak singlets or triplets

- Scalars: Need comparable values of C_{S_L} and C_{S_R}
 - If H^{\pm} flavor singlet, $C_{S_L} \propto y_c$, so cannot fit $R(D^{(*)})$ keeping y_t perturbative
 - If H^{\pm} is charged under flavor (combination of *Y*-s, to couple to quarks & leptons), to generate $C_{S_L} \sim C_{S_R}$, some $\mathcal{O}(1)$ coupling to 1st generation quarks unavoidable Bounds on 4q or $2q2\ell$ operators exclude it
- Vectors: Rescaling the SM operator (O_{V_L}) gives good fit to the data Flavor singlet w/ W-like couplings: $m_{W'} \gtrsim 1.8 \text{ TeV} \iff 0.2 \sim g^2 |V_{cb}| (1 \text{ TeV}/m_{W'})^2$ Couplings to u, d suppressed for $(\bar{\mathbf{3}}, \mathbf{3}, \mathbf{1})$ and $(\bar{\mathbf{3}}, \mathbf{1}, \mathbf{3})$ under $U(3)_Q \times U(3)_u \times U(3)_d$ $(\bar{\mathbf{3}}, \mathbf{3}, \mathbf{1})$: $b \rightarrow c$ transitions suppressed by y_c , too small $(\bar{\mathbf{3}}, \mathbf{1}, \mathbf{3})$: can fit data if $y_b = \mathcal{O}(1)$, but excluded by tree-level FCNC via W'^0 (If dynamics allows $W'\bar{Q}_L^3 Q_L^3$, but not $W'\bar{Q}_L^i Q_L^i$, viable models exist; beyond MFV [Greljo, Isidori, Marzocca, 1506.0170])

MFV leptoquarks

• Assign charges under flavor sym.:

[viable MFV LQs: Freytsis, ZL, Ruderman]

 $U(3)_Q \times U(3)_u \times U(3)_d$

• Simplest choices — leptoquarks could be electroweak $SU(2)_L$ singlets or triplets: scalars: $S \sim (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})$, $(\mathbf{1}, \overline{\mathbf{3}}, \mathbf{1})$, $(\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}})$ vectors: $U_{\mu} \sim (\mathbf{3}, \mathbf{1}, \mathbf{1})$, $(\mathbf{1}, \mathbf{3}, \mathbf{1})$, $(\mathbf{1}, \mathbf{1}, \mathbf{3})$

 $S(\bar{\mathbf{3}},\mathbf{1},\mathbf{1})$ and $U_{\mu}(\mathbf{3},\mathbf{1},\mathbf{1})$ give large $pp \to \tau^+\tau^-$, excluded by Z' searches

 $S(\mathbf{1}, \mathbf{\bar{3}}, \mathbf{1})$ and $U_{\mu}(\mathbf{1}, \mathbf{3}, \mathbf{1})$ give y_c suppressed $B \to D^{(*)} \tau \bar{\nu}$ contributions \Rightarrow too large couplings, or too light leptoquarks

• Possibly viable: $S(\mathbf{1}, \mathbf{1}, \mathbf{\overline{3}})$ and $U_{\mu}(\mathbf{1}, \mathbf{1}, \mathbf{3}) \Rightarrow$ consider in more detail Both can be electroweak singlets or triplets

The $S(1,1,\overline{3})$ scalar LQ

• Interactions terms for electroweak singlet:

$$\mathcal{L} = S(\lambda Y_d^{\dagger} \bar{q}_L^c i \tau_2 \ell_L + \tilde{\lambda} Y_d^{\dagger} Y_u \bar{u}_R^c e_R)$$

= $S_i(\lambda y_{d_i} V_{ji}^* \bar{u}_{Lj}^c e_L - \lambda y_{d_i} \bar{d}_{Li}^c \nu_L + \tilde{\lambda} y_{d_i} y_{u_j} V_{ji}^* \bar{u}_{Rj}^c e_R)$

Integrating out *S*, contribution to $R(X_c)$ via: $(m_{S_3} \neq m_{S_1} = m_{S_2})$

$$-\frac{V_{cb}^*}{m_{S_3}^2} \Big(\lambda^2 y_b^2 \, \mathcal{O}_{S_R}^{\prime\prime} + \lambda \tilde{\lambda} y_c y_b^2 \, \mathcal{O}_{S_L}^{\prime\prime}\Big)$$

[electroweak triplet has no $\tilde{\lambda}$ term]

- Can fit $R(D^{(*)})$ data if $y_b = O(1)$ Check $Z\tau^+\tau^-$ constraints, etc.
- Leptons: (i) τ alignment, charge LQ and 3rd gen. leptons opposite under U(1)_τ
 (ii) lepton MFV, (1, 3) under U(3)_L × U(3)_e [constraints differ]
- LHC Run 1 bounds on pair-produced LQ decaying to $t\tau$ or $b\nu$, $m_{S_3} \gtrsim 560 \,\mathrm{GeV}$



Constraints from $b
ightarrow s
u ar{
u}$

• With three Yukawa spurion insertions, one can write:

$$\delta \mathcal{L}' = \lambda' S Y_d^{\dagger} Y_u Y_u^{\dagger} \, \bar{q}_L^c i \tau_2 \ell_L$$

• Generates four-fermion operator:

$$rac{V_{tb}^*V_{ts}}{2m_{S_3}^2}\,y_t^2y_b^2\,\lambda^\prime\lambda\,(ar b_L\gamma^\mu s_L\,ar
u_L\gamma_\mu
u_L)$$

- Current limits on $B \to K \nu \bar{\nu}$ imply: $\lambda' / \lambda \lesssim 0.1$ some suppression of λ' required
- Electroweak singlet vector LQ is the only one of the four models w/o this constraint (E.g., vector triplet has $\lambda' \bar{q}_L Y_u Y_u^{\dagger} Y_d \tau \gamma_{\mu} \ell_L U^{\mu}$ term)
- If central values & patterns change, more "mainstream" MFV models may fit

Many signals, tests, consequences

- LHC: several extensions to current searches would be interesting
 - Extend \tilde{t} and \tilde{b} searches to higher prod. cross section
 - Search for $t \to b \tau \bar{\nu}$, $c \tau^+ \tau^-$ nonresonant decays
 - Search for states on-shell in *t*-channel, but not in *s*-channel
 - Search for $t\tau$ resonances
- Low energy probes:
 - Firm up $B \to D^{(*)} \tau \bar{\nu}$ rate and kinematic distributions; Cross checks w/ inclusive
 - Smaller theor. error in $[d\Gamma(B \to D^{(*)}\tau\bar{\nu})/dq^2]/[d\Gamma(B \to D^{(*)}l\bar{\nu})/dq^2]$ at same q^2
 - Improve bounds on $\mathcal{B}(B\to K^{(*)}\nu\bar\nu)$
 - $\mathcal{B}(D \to \pi \nu \bar{\nu}) \sim 10^{-5}$ possible, maybe BES III; enhanced $\mathcal{B}(D \to \mu^+ \mu^-)$
 - $\mathcal{B}(B_s \to \tau^+ \tau^-) \sim 10^{-3}$ possible

Not excluded?

- LQ pair production
- top decays
- *t*-channel non-resonant l^+l^- production
- LEP $Z \rightarrow l^+ l^-$, HERA LQ production
- $c\bar{c}e^+e^-$ contact interaction / compositness
- Strongest constraint from ϵ_K :

- $B \overline{B}$ mixing, $K \overline{K}$ mixing, $D \overline{D}$ mixing
- $B \to X_s \nu \bar{\nu}, K \to \pi \nu \bar{\nu}$
- $D \rightarrow l^+ l^-$ at tree level
- $\bullet \; B^- \to \mu \bar{\nu}$ at tree level
- $B_s
 ightarrow \mu^+ \mu^-$ and $K_L
 ightarrow \mu^+ \mu^-$ at one loop

$$|\epsilon_K|_{\rm SM} = \frac{G_F^2 m_W^2 m_K f_K^2}{6\sqrt{2} \pi^2 \Delta m_K} \hat{B}_K \kappa_\epsilon |V_{cb}|^2 \lambda^2 \bar{\eta} \Big[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \Big]$$

 $|\epsilon_K|_{\mathrm{exp}} = (2.23 \pm 0.01) \times 10^{-3}$ VS. $|\epsilon_K|_{\mathrm{SM}} = (1.81 \pm 0.28) \times 10^{-3}$ [Brod & Gorbahn, 2011]

- Uncertainties big enough to allow for 5-10% enhancement of $|V_{cb}|$
- The $R(D^{(*)})$ excess may shrink and be significant; can also make cocktails...
- Even an enhancement much smaller than today can become 5σ in the future

