Theoretical perspectives on $R(D)$ and $R\left(D^{*}\right)$

Zoltan Ligeti

12-16 June 2017, University of Zurich, Zurich, Switzerland

New physics scale and flavor

- SM cannot be the full story - past theoretical prejudices haven't been confirmed
- Are measures of fine tuning misleading, and NP is order of magnitude heavier?
- New physics at a TeV - MFV probably useful approximation to its flavor structure I
New physics at $10^{1-2} \mathrm{TeV}$ - less strong flavor suppression, MFV less motivated
- Strong SM suppressions (GIM, CKM, loops, chiral) \Rightarrow sensitive to very high scales
- Future: $\frac{(\text { Belle II data set })}{(\text { Belle data set })} \sim \frac{(\text { LHCb lifetime })}{(\text { LHCb now })} \sim \frac{(\text { ATLAS \& CMS 3/ab) }}{\text { (ATLAS \& CMS now) })} \sim 50-100$
- Conservatively: increases in mass scales probed $\sqrt[4]{50} \sim 2.7$
(for dim-6 contributions to B decays, H couplings, etc.)
New questions for $100 \times$ more data? New theory ideas? Data always motivated theory progress!

University of
$Z L-p .1$
Zurich ${ }^{\text {UZ }}$

CKM fit: SM vs. NP constraints

- SM dominates $C P$ viol. \Rightarrow KM Nobel
- The implications of the consistency often overstated

CKM fit: SM vs. NP constraints

- SM dominates $C P$ viol. \Rightarrow KM Nobel
- The implications of the consistency often overstated
- Much larger allowed region if the SM is not assumed
- Tree-level (mainly $V_{u b} \& \gamma$) vs. loopdominated measurements crucial

- In loop (FCNC) processes NP / SM $\sim 20 \%$ is still allowed (mixing, $B \rightarrow x \ell^{+} \ell^{-}, x \gamma$, etc.)

University of
$Z L-p .2$

Often discussed tensions with the SM

- Intriguing tensions - could become the first clear evidence for NP
- R_{K} and $R_{K^{*}}$
- $R(D)$ and $R\left(D^{*}\right)$
- P_{5}^{\prime} and other angular distributions
- $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$rate
- $(g-2)_{\mu}$
- $\epsilon^{\prime} / \epsilon$

Only $R\left(D^{(*)}\right)$ is permissible at if Tisijbles - at least one ν in the final state :-)
Uncertainties? What if theory uncertainty of hadronic model dependent parts is set to 100% ?

- I am working on $R\left(D^{(*)}\right)$, b / c theory can be improved a lot, indep't of current data What are the smallest deviations from the SM that can be unambiguously established?

Likely lead (at least) to resolving the 20-some yr inclusive / exclusive $\left|V_{c b}\right|$ tension

University of

Outline

- Use $B \rightarrow D^{(*)} l \bar{\nu}$ to refine $B \rightarrow D^{(*)} \tau \bar{\nu}$, lattice independent, improvable
[Bernlochner, ZL, Papucci, Robinson, 1703.05330]
- MFV models, leptoquarks

Suppress $e \& \mu$ instead of enhancing τ ?
[Freytsis, ZL, Ruderman, 1506.08896]
[Freytsis, ZL, Ruderman, soon]

- $B \rightarrow D^{* *} \ell \bar{\nu}$ in the SM and $R\left(D^{* *}\right)$
[Bernlochner, ZL, 1606.09300.]
$B \rightarrow D^{* *} \ell \bar{\nu}$ for arbitrary new physics
[soon]
- Fully differential distributions

Developing Hammer MC
'When you think you can finally forget a topic, it's just about to become important'

University of

The tension with the SM

- BaBar, Belle, LHCb: $R(X)=\frac{\Gamma(B \rightarrow X \tau \bar{\nu})}{\Gamma(B \rightarrow X(e / \mu) \bar{\nu})}$ $R(D)=0.403 \pm 0.047, \quad R\left(D^{*}\right)=0.310 \pm 0.017$ June 5 @ FPCP: LHCb $\tau \rightarrow \nu 3 \pi$ analysis for $R\left(D^{*}\right)$
4.1σ from SM predictions - robust due to heavy quark symmetry + lattice QCD (only D so far)

- Tension: $R\left(D^{(*)}\right)$ vs. $\mathcal{B}\left(b \rightarrow X \tau^{+} \nu\right)=(2.41 \pm 0.23) \%$ (LEP) [Freytsis, ZL, Ruderman] SM: $R\left(X_{c}\right)=0.223 \pm 0.004-$ no $\mathcal{B}(B \rightarrow X \tau \bar{\nu})$ measurement since LEP Imply NP at a fairly low scale (leptoquarks, W^{\prime}, etc.), likely visible at the LHC
- Will become clear one way or another: forthcoming LHCb result + Belle II
- Experimental precision will improve a lot + theory uncertainty also improvable

Refining SM predictions

Can it be a theory issue?

Measured spectra for $e \& \mu$ final states

- 4 functions: q^{2} spectra in $D \& D^{*}+$ two q^{2}-dependent angular distrib. in $D^{*}, R_{1,2}$ All form factors $=$ Isgur-Wise function $+\Lambda_{\mathrm{QCD}} / m_{c, b}+\alpha_{s}$ corrections

FIG. 6: The measured w dependence of $\mathcal{F}(w)\left|V_{c b}\right|$ (data points) compared to the theoretical function with the fitted parameters (solid line). The experimental uncertainties are too small to be visible.
[Plot from BaBar 0705.4008; only Belle unfolded 1510.03657, 1702.01521]

Available for the first time

- Belle published their unfolded $B \rightarrow D^{*} l \bar{\nu}$ results [1702.01521]

Theorists can use it - impossible in the past

BGL = Boyd, Grinstein, Lebed, '95-97
CLN = Caprini, Lellouch, Neubert, '97

Basics of $B \rightarrow D^{(*)} \ell \bar{\nu}$

- Only Lorentz invariance: 6 functions of q^{2}, only 4 measurable with e, μ final states

$$
\begin{aligned}
\langle D| \bar{c} \gamma^{\mu} b|\bar{B}\rangle & =f_{+}\left(q^{2}\right)\left(p_{B}+p_{D}\right)^{\mu}+\left[f_{0}\left(q^{2}\right)-f_{+}\left(q^{2}\right)\right] \frac{m_{B}^{2}-m_{D}^{2}}{q^{2}} q^{\mu} \\
\left\langle D^{*}\right| \bar{c} \gamma^{\mu} b|\bar{B}\rangle & =-i g\left(q^{2}\right) \epsilon^{\mu \nu \rho \sigma} \varepsilon_{\nu}^{*}\left(p_{B}+p_{\left.D^{*}\right) \rho} q_{\sigma}\right. \\
\left\langle D^{*}\right| \bar{c} \gamma^{\mu} \gamma^{5} b|\bar{B}\rangle & =\varepsilon^{* \mu} f\left(q^{2}\right)+a_{+}\left(q^{2}\right)\left(\varepsilon^{*} \cdot p_{B}\right)\left(p_{B}+p_{D^{*}}\right)^{\mu}+a_{-}\left(q^{2}\right)\left(\varepsilon^{*} \cdot p_{B}\right) q^{\mu}
\end{aligned}
$$

Two form factors involving $q^{\mu}=p_{B}^{\mu}-p_{D^{(*)}}^{\mu}$ do not contribute for $m_{l}=0$

- HQET constraints: 6 functions $\Rightarrow 1$ in $m_{c, b} \gg \Lambda_{\mathrm{QCD}}$ limit +3 at $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{c, b}\right)$

$$
\begin{array}{rlr}
\langle D| \bar{c} \gamma^{\mu} b|\bar{B}\rangle & =\sqrt{m_{B} m_{D}}\left[h_{+}\left(v+v^{\prime}\right)^{\mu}+h_{-}\left(v-v^{\prime}\right)^{\mu}\right] \quad w=v_{B} \cdot v_{D^{(*)}}^{\prime} \\
\left\langle D^{*}\right| \bar{c} \gamma^{\mu} b|\bar{B}\rangle & =i \sqrt{m_{B} m_{D^{*}}} h_{V} \varepsilon^{\mu \nu \alpha \beta} \epsilon_{\nu}^{*} v_{\alpha}^{\prime} v_{\beta} \\
\left\langle D^{*}\right| \bar{c} \gamma^{\mu} \gamma^{5} b|\bar{B}\rangle & =\sqrt{m_{B} m_{D^{*}}}\left[h_{A_{1}}(w+1) \epsilon^{* \mu}-h_{A_{2}}\left(\epsilon^{*} \cdot v\right) v^{\mu}-h_{A_{3}}\left(\epsilon^{*} \cdot v\right) v^{\prime \mu}\right]
\end{array}
$$

$m_{c, b} \gg \Lambda_{\mathrm{QCD}}$ limit: $h_{+}=h_{V}=h_{A_{1}}=h_{A_{3}}=\xi(w)$ and $h_{-}=h_{A_{2}}=0$

- Constrain all 4 functions from $B \rightarrow D^{(*)} l \bar{\nu} \Rightarrow \mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / m_{c, b}^{2}, \alpha_{s}^{2}\right)$ uncertainties

Form factor expansion details

- Expand form factors to order $\varepsilon_{c, b}=\Lambda_{\mathrm{QCD}} /\left(2 m_{c, b}\right)$ and $\alpha_{s} \quad$ (new results for tensor ff)

$$
f_{i}(w)=\xi(w)\left[1+\varepsilon_{c} f_{i}^{(c, 1)}(w)+\varepsilon_{b} f_{i}^{(b, 1)}(w)+\alpha_{s} f_{i}^{\left(\alpha_{s}\right)}\left(\frac{m_{c}}{m_{b}}, w\right)+\mathcal{O}\left(\varepsilon_{c, b}^{2}, \alpha_{s}^{2}\right)\right]
$$

Absorbed $\xi(w) \rightarrow \xi(w)+2\left(\varepsilon_{c}+\varepsilon_{b}\right) \chi_{1}(w)$, so only $\chi_{2,3}$ and $\eta=\xi_{3} / \xi$ remain
Known for SM terms since the early 90s, but not written down for others before
The $\alpha_{s} \varepsilon_{c, b}$ terms are known, should be included if NP established Expect that fit readjusts subleading Isgur-Wise functions \Rightarrow modest impacts

- $\chi_{2,3} \& \eta$ calculated in QCD sum rules - parametrize:
$1 / m$ Lagrangian: $\hat{\chi}_{2}^{\text {ren }}(1)=-0.06 \pm 0.02 \quad \hat{\chi}_{2}^{\text {ren }}(1)=0 \pm 0.02 \quad \hat{\chi}_{3}^{\text {ren }}(1)=0.04 \pm 0.02$
$1 / m$ current: $\eta(1)=0.62 \pm 0.2, \quad \eta^{\prime}(1)=0 \pm 0.2 \quad$ (Luke's thm. $\left.\Rightarrow \hat{\chi}_{3}(1)=0\right)$
Central values match what CLN used, these uncertainties > in original papers

Inputs and $\left|V_{c b}\right|$ fits

- Lattice QCD: $B \rightarrow D$ at $w=1,1.08,1.16$

$$
B \rightarrow D^{*} \text { at } w=1
$$

- Analyticity-based constraints on shapes of form factors

BGL: no HQET relations in parametrization, treat 3 form factors as unrelated
CLN: use HQET + QCD sum rules for $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{c, b}\right)$, no uncertainties assigned more caveats in practical implementations

- Fewer fit parameters in CLN, used by all experimental measurements since '97 Used also in theory papers (except lattice) to derive SM predictions for $R\left(D^{(*)}\right)$

Bigi, Gambino, Schacht, 1703.06124, $\left|V_{c b}\right|_{\mathrm{BGL}}=\left(41.7_{-2.1}^{+2.0}\right) \times 10^{-3}$
Grinstein \& Kobach, 1703.08170, $\quad\left|V_{c b}\right|_{\mathrm{BGL}}=\left(41.9_{-1.9}^{+2.0}\right) \times 10^{-3}$
Belle, 1702.01521,

$$
\left|V_{c b}\right|_{\mathrm{CLN}}=(37.4 \pm 1.3) \times 10^{-3} \quad(38.2 \pm 1.5 \text { in 1703.06124 })
$$

Consider 7 different fit scenarios

- All calculations of subleading $\Lambda_{\mathrm{QCD}} / m_{c, b}$ Isgur-Wise functions model dependent Only $R(D)$ calculated in LQCD - all others did not include uncertainties properly
- Theory [CLN] \& exp papers: $R_{1,2}(w)=\underbrace{R_{1,2}(1)}_{\text {fit }}+\underbrace{R_{1,2}^{\prime}(1)}_{\text {fixed }}(w-1)+\underbrace{R_{1,2}^{\prime \prime}(1)}_{\text {fixed }}(w-1)^{2} / 2$ In HQET: $\quad R_{1,2}(1)=1+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{c, b}, \alpha_{s}\right) \quad R_{1,2}^{(n)}(1)=0+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{c, b}, \alpha_{s}\right)$ Sometimes calculations using QCD sum rule predictions for $\Lambda_{\mathrm{QCD}} / m_{c, b}$ corrections are called the HQET predictions
- Our fits:

Fit	QCDSR	Lattice QCD			
$\mathcal{F}(1)$		$f_{+, 0}(w>1)$	Belle Data		
		-	+	+	-
$\mathrm{L}_{w=1}+\mathrm{SR}$	+	+	+	-	+
NoL	-	-	-	-	+
$\mathrm{NoL}+\mathrm{SR}$	+	-	-	-	+
$\mathrm{L}_{w \geq 1}$	-	+	+	+	+
$\mathrm{L}_{w \geq 1}+\mathrm{SR}$	+	+	+	+	+
th: $\mathrm{L}_{w \geq 1}+\mathrm{SR}$	+	+	+	+	+

Aside: Fit details

- Standard choice to minimize range of expansion param' z_{*} in unitarity constraints:

$$
z_{*}(w)=\frac{\sqrt{w+1}-\sqrt{2} a}{\sqrt{w+1}+\sqrt{2} a}, \quad a=\left(\frac{1+r_{D}}{2 \sqrt{r_{D}}}\right)^{1 / 2}
$$

- Parametrize similar to CLN - wanted to start with fit comparable to prior results

$$
\frac{\mathcal{G}(w)}{\mathcal{G}\left(w_{0}\right)} \simeq 1-8 a^{2} \rho_{*}^{2} z_{*}+\left(V_{21} \rho_{*}^{2}-V_{20}\right) z_{*}^{2}
$$

Translate this to $\xi(w) / \xi\left(w_{0}\right)$ to be able to simultaneously fit $B \rightarrow D$ and $B \rightarrow D^{*}$ Uncertainty in z_{*}^{2} term may be sizable - we checked that fit results are stable if constraint between the slope and the curvature is relaxed

Keep uncertainties and correlations in form factor ratios ($\Lambda_{\mathrm{QCD}} / m$ Isgur-Wise fn's)

- In progress: study systematically orders/constraints in fit, HQET corrections, etc.

University of
ZL-p. 12

Experimental inputs and self-consistency

- Experimental inputs: $B \rightarrow D l \bar{\nu}: \mathrm{d} \Gamma / \mathrm{d} w$
(Only Belle published fully corrected distributions)

$$
B \rightarrow D^{*} l \bar{\nu}: \mathrm{d} \Gamma / \mathrm{d} w, R_{1}(w), R_{2}(w)
$$

Model-dependent inputs in SM predictions for $R_{1,2}$ in all exp. fits \& theory papers

- Mild tension for $R_{1}(1)$ — may affect $\left|V_{c b}\right|$ from $B \rightarrow D^{(*)} l \bar{\nu}$, long standing issues In $1 S$ scheme: $R_{1}(1) \simeq 1.34-0.12 \eta(1), \quad R_{2}(1) \simeq 0.98-0.42 \eta(1)-0.54 \hat{\chi}_{2}(1)$

Our SM predictions for $R(D)$ and $R\left(D^{*}\right)$

- Significance of the tension is (surprisingly) stable across our fit scenarios:

- Fit just a quadratic polynomial in z_{*} : consistent results

Summary of SM predictions

- Small variations: heavy quark symmetry \& phase space leave little wiggle room

Scenario	$R(D)$	$R\left(D^{*}\right)$	Correlation
$\mathrm{L}_{w=1}$	0.292 ± 0.005	0.255 ± 0.005	41%
$\mathrm{~L}_{w=1}+\mathrm{SR}$	0.291 ± 0.005	0.255 ± 0.003	57%
NoL	0.273 ± 0.016	0.250 ± 0.006	49%
$\mathrm{NoL}+\mathrm{SR}$	0.295 ± 0.007	0.255 ± 0.004	43%
$\mathrm{~L}_{w \geq 1}$	0.298 ± 0.003	0.261 ± 0.004	19%
$\mathbf{L}_{w \geq \geq 1}+$ SR	$\mathbf{0 . 2 9 9} \pm \mathbf{0 . 0 0 3}$	$\mathbf{0 . 2 5 7} \pm \mathbf{0 . 0 0 3}$	44%
th: $\mathrm{L}_{w \geq 1}+\mathrm{SR}$	0.306 ± 0.005	0.256 ± 0.004	33%
Data [HFAG]	0.403 ± 0.047	0.310 ± 0.017	-23%
Lattice [FLAG]	0.300 ± 0.008	-	-
Bigi, Gambino '16	0.299 ± 0.003	-	-
Fajfer et al. '12	-	0.252 ± 0.003	-

- Tension between our " $\mathrm{L}_{w \geq 1}+\mathrm{SR}$ " fit and data is 3.9σ, with p-value $=11.5 \times 10^{-5}$
(close to HFAG: 3.9σ, with p-value $=8.3 \times 10^{-5}$)

Impact on new physics effects

- Add only one NP operator to the SM at a time: $O_{S}-O_{P}, O_{S}+O_{P}, O_{V}+O_{A}, O_{T}$

- Not all $1 / m$ corrections in literature, some $\mathcal{O}(1 / m)$ form factors had 100% uncert. (i.e., tensor currents vanishing in heavy quark limit)
- Shifts from gray regions non-negligible - if one seriously wanted to fit a NP model

New physics options

Consider fits to redundant set of operators

Likely tree-level: different fermion orderings convenient to understand mediators

Usually only the first 5 operators considered, related by Fierz

	Operator Fierz identity	Allowed Current	$\delta \mathcal{L}_{\text {int }}$
$\begin{aligned} & \hline \mathcal{O}_{V_{L}} \\ & \mathcal{O}_{V_{R}} \\ & \mathcal{O}_{S_{R}} \\ & \mathcal{O}_{S_{L}} \\ & \mathcal{O}_{T} \end{aligned}$	$\begin{gathered} \left(\bar{c} \gamma_{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\mu} P_{L} \nu\right) \\ \left(\bar{c} \gamma_{\mu} P_{R} b\right)\left(\bar{\tau} \gamma^{\mu} P_{L} \nu\right) \\ \left(\bar{c} P_{R} b\right)\left(\bar{\tau} P_{L} \nu\right) \\ \left(\bar{c} P_{L} b\right)\left(\bar{\tau} P_{L} \nu\right) \\ \left(\bar{c} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{\tau} \sigma_{\mu \nu} P_{L} \nu\right) \end{gathered}$	$\begin{gathered} (1,3)_{0} \\ \rangle(1,2)_{1 / 2} \end{gathered}$	$\begin{gathered} \left(g_{q} \bar{q}_{L} \boldsymbol{\tau} \gamma^{\mu} q_{L}+g_{\ell} \bar{\ell}_{L} \boldsymbol{\tau} \gamma^{\mu} \ell_{L}\right) W_{\mu}^{\prime} \\ \left(\lambda_{d} \bar{q}_{L} d_{R} \phi+\lambda_{u} \bar{q}_{L} u_{R} i \tau_{2} \phi^{\dagger}+\lambda_{\ell} \bar{\ell}_{L} e_{R} \phi\right) \end{gathered}$
$\begin{aligned} & \mathcal{O}_{V_{L}}^{\prime} \\ & \mathcal{O}_{V_{R}}^{\prime} \\ & \mathcal{O}_{S_{R}}^{\prime} \\ & \mathcal{O}_{S_{L}}^{\prime} \\ & \mathcal{O}_{T}^{\prime} \end{aligned}$	$\begin{aligned} &\left(\bar{\tau} \gamma_{\mu} P_{L} b\right)\left(\bar{c} \gamma^{\mu} P_{L} \nu\right) \longleftrightarrow \\ &\left(\bar{\tau} \gamma_{\mu} P_{R} b\right)\left(\bar{c} \gamma^{\mu} P_{L} \nu\right) \longleftrightarrow \\ &\left(\bar{\tau} P_{R} b\right)\left(\bar{c} P_{L} \nu\right) \longleftrightarrow \\ &\left(\overline{V_{L}}\langle \right. \\ &\left(\bar{\tau} P_{L} b\right)\left(\bar{c} P_{L} \nu\right) \longleftrightarrow-2 \mathcal{O}_{S_{R}} \\ &\left(\bar{\tau} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{c} \sigma_{\mu \nu} P_{L} \nu\right) \longleftrightarrow-\frac{1}{2} \mathcal{O}_{V_{R}}-\frac{1}{8} \mathcal{O}_{T} \\ & \hline-6 \mathcal{O}_{S_{L}}+\frac{1}{2} \mathcal{O}_{T} \end{aligned}$	$\begin{gathered} (3,3)_{2 / 3} \\ \rangle(3,1)_{2 / 3} \\ (3,2)_{7 / 6} \end{gathered}$	$\begin{gathered} \lambda \bar{q}_{L} \boldsymbol{\tau} \gamma_{\mu} \ell_{L} \boldsymbol{U}^{\mu} \\ \left(\lambda \bar{q}_{L} \gamma_{\mu} \ell_{L}+\tilde{\lambda} \bar{d}_{R} \gamma_{\mu} e_{R}\right) U^{\mu} \\ \left(\lambda \bar{u}_{R} \ell_{L}+\tilde{\lambda} \bar{q}_{L} i \tau_{2} e_{R}\right) R \end{gathered}$
$\mathcal{O}_{V_{L}}^{\prime \prime}$ $\mathcal{O}_{V_{R}}^{\prime \prime}$ $\mathcal{O}_{S_{R}}^{\prime \prime}$ $\mathcal{O}_{S_{L}}^{\prime \prime}$ $\mathcal{O}_{T}^{\prime \prime}$	$\begin{aligned} & \hline\left(\bar{\tau} \gamma_{\mu} P_{L} c^{c}\right)\left(\bar{b}^{c}{ }^{\mu} P_{L} \nu\right) \longleftrightarrow \\ &\left(\bar{\tau} \gamma_{\mu} P_{R} c^{c}\right)\left(\bar{b}^{c} \gamma^{\mu} P_{L} \nu\right) \longleftrightarrow \\ &\left(\bar{\tau} \mathcal{O}_{R} c^{c}\right)\left(\bar{b}^{c} P_{L} \nu\right) \longleftrightarrow \\ &\left(\overline{\mathcal{O}_{S_{R}}}\right. \\ &\left(\bar{\tau} P_{L} c^{c}\right)\left(\bar{b}^{c} P_{L} \nu\right) \longleftrightarrow \\ &\left(\bar{\tau} \sigma^{\mu \nu} P_{L} c^{c}\right)\left(\bar{b}^{c} \sigma_{\mu \nu} P_{L} \nu\right) \longleftrightarrow-\frac{1}{2} \mathcal{O}_{V_{L}}\langle \\ & \end{aligned}$	$\begin{aligned} & (\overline{3}, 2)_{5 / 3} \\ & (\overline{3}, 3)_{1 / 3} \\ & \rangle(\overline{3}, 1)_{1 / 3} \end{aligned}$	$\begin{gathered} \left(\lambda \bar{d}_{R}^{c} \gamma_{\mu} \ell_{L}+\tilde{\lambda} \bar{q}_{L}^{c} \gamma_{\mu} e_{R}\right) V^{\mu} \\ \lambda \bar{q}_{L}^{c} i \tau_{2} \tau \ell_{L} S \\ \left(\lambda \bar{q}_{L}^{c} i \tau_{2} \ell_{L}+\tilde{\lambda} \bar{u}_{R}^{c} e_{R}\right) S \end{gathered}$ [Freytsis, ZL, Ruderman, 15

[Freytsis, ZL, Ruderman, 1506.08896]

Fits to a single operator

Ruled out by the BaBar q^{2} spectrum [1303.0571]

- Large coefficients, $\Lambda=1 \mathrm{TeV}$ in plots \Rightarrow fairly light mediators (obvious: $20-30 \%$ of a tree-level rate)

In HQET limit, we confirmed the "classic" paper

Fits to two operators

The \otimes solution are ruled out by the q^{2} spectrum

Operator coefficients	
$C_{V_{L}}^{\prime}=0.24$	$C_{V_{R}}^{\prime}=1.10$
$C_{V_{L}}^{\prime}=0.18$	$C_{V_{R}}^{\prime}=-0.01$
$C_{S_{R}}^{\prime \prime}=0.96$	$C_{S_{L}}^{\prime \prime}=2.41$

Operator fits \rightarrow viable MFV models?

- Good fits for several mediators: scalar, "Higgs-like" $(1,2)_{1 / 2}$
vector, " W^{\prime}-like" $(1,3)_{0}$
"scalar leptoquark" $(\overline{3}, 1)_{1 / 3}$ or $(\overline{3}, 3)_{1 / 3}$
"vector leptoquark" $(3,1)_{2 / 3}$ or $(3,3)_{2 / 3}$
We did not try to fit any of the other anomalies simultaneously
- Which BSM scenarios can be MFV?

Viable leptoquarks: scalar $S(\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}})$ or vector $U_{\mu}(\mathbf{1}, \mathbf{1}, \mathbf{3})$
Bounds: $b \rightarrow s \nu \bar{\nu}, D^{0} \& K^{0}$ mixing, $Z \rightarrow \tau^{+} \tau^{-}$, LHC contact int., $p p \rightarrow \tau^{+} \tau^{-}$, etc. In this case there is no $b b \tau \tau$ coupling

How odd scenarios may be viable?

- All papers enhance the τ mode compared to the SM

Can one suppress the e and μ modes instead?

- Unique viable option: modify the SM four-fermion operator

Good fit with: $V_{c b}^{(\exp)} \sim V_{c b}^{(\mathrm{SM})} \times 0.9 \quad V_{u b}^{(\exp)} \sim V_{u b}^{(\mathrm{SM})} \times 0.9$

- Many relevant constraints, some of the strongest from ϵ_{K} and B mixing

University of

What about $e-\mu$ (non)universality?

- How well is the difference of the e and μ rates constrained?

Parameters	De sample	$D \mu$ sample	combined result
ρ_{D}^{2}	$1.22 \pm 0.05 \pm 0.10$	$1.10 \pm 0.07 \pm 0.10$	$1.16 \pm 0.04 \pm 0.08$
$\rho_{D^{*}}^{2}$	$1.34 \pm 0.05 \pm 0.09$	$1.33 \pm 0.06 \pm 0.09$	$1.33 \pm 0.04 \pm 0.09$
R_{1}	$1.59 \pm 0.09 \pm 0.15$	$1.53 \pm 0.10 \pm 0.17$	$1.56 \pm 0.07 \pm 0.15$
R_{2}	$0.67 \pm 0.07 \pm 0.10$	$0.68 \pm 0.08 \pm 0.10$	$0.66 \pm 0.05 \pm 0.09$
$\mathcal{B}\left(D^{0} \ell \bar{\nu}\right)(\%)$	$2.38 \pm 0.04 \pm 0.15$	$2.25 \pm 0.04 \pm 0.17$	$2.32 \pm 0.03 \pm 0.13$
$\mathcal{B}\left(D^{* 0} \ell \bar{\nu}\right)(\%)$	$5.50 \pm 0.05 \pm 0.23$	$5.34 \pm 0.06 \pm 0.37$	$5.48 \pm 0.04 \pm 0.22$
$\chi^{2} /$ n.d.f. (probability)	$416 / 468(0.96)$	$488 / 464(0.21)$	$2.0 / 6(0.92)$

[BaBar, 0809.0828 — similar results in Belle, 1010.5620]

- 10% difference allowed... some wrong statements...
- How much better can difference be constrained?

Γ_{1}	$e^{+} \nu_{e}$ anything
Γ_{2}	$\bar{p} e^{+} \nu_{e}$ anything
Γ_{3}	$\mu^{+} \nu_{\mu}$ anything
Γ_{4}	$\ell^{+} \nu_{\ell}$ anything

Reaching the 1% level on ratio might be possible (but challenging) at Belle II

$B \rightarrow D^{* *} \tau \bar{\nu}$

Particle	$s_{l}^{\pi_{l}}$	J^{P}	$m(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$
D_{0}^{*}	$\frac{1}{2}^{+}$	0^{+}	2330	270
D_{1}^{*}	$\frac{1}{2}^{+}$	1^{+}	2427	384
D_{1}	$\frac{3}{2}^{+}$	1^{+}	2421	34
D_{2}^{*}	$\frac{3}{2}^{+}$	2^{+}	2462	48

Parameter	$\bar{\Lambda}$	$\bar{\Lambda}^{\prime}$	$\bar{\Lambda}^{*}$
Value $[\mathrm{GeV}]$	0.40	0.80	0.76

Why bother...?

- $B \rightarrow D^{* *} \tau \bar{\nu}$: rates to narrow D_{1}, D_{2}^{*} measurable? No predictions In $B_{s} \rightarrow D_{s}^{* *} \ell \bar{\nu}$ case, all $4 D_{s}^{* *}$ states are narrow $\Rightarrow \mathrm{LHCb}$?
- Largest syst. uncertainty in $R\left(D^{(*)}\right)$
- May matter for tensions between inclusive and exclusive $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ determinations
- Complementary sensitivity to NP
- Complementary experimentally

Decay rates not too small

	$R(D)[\%]$	$R\left(D^{*}\right)[\%]$	Correlation
$D^{(*(*))} \ell \nu$ shapes	4.2	1.5	0.04
$D^{* *}$ composition	1.3	3.0	-0.63
Fake D yield	0.5	0.3	0.13
Fake ℓ yield	0.5	0.6	-0.66
D_{s} yield	0.1	0.1	-0.85
Rest yield	0.1	0.0	-0.70
Efficiency ratio $f^{D^{+}}$	2.5	0.7	-0.98
Efficiency ratio $f^{D^{0}}$	1.8	0.4	0.86
Efficiency ratio $f_{\text {eff }}^{D^{*+}}$	1.3	2.5	-0.99
Efficiency ratio $f_{\text {eff }}^{D^{* 0}}$	0.7	1.1	0.94
CF double ratio g^{+}	2.2	2.0	-1.00
CF double ratio g^{0}	1.7	1.0	-1.00
Efficiency ratio $f_{\text {wc }}$	0.0	0.0	0.84
$M_{\text {miss }}^{2}$ shape	0.6	1.0	0.00
$o_{\text {NB }}^{\prime}$ shape	3.2	0.8	0.00
Lepton PID efficiency	0.5	0.5	1.00
Total	7.1	5.2	-0.32

[Belle, 1507.03233]

Some model independent results

- At $w \equiv v \cdot v^{\prime}=1$, the $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{c, b}\right)$ matrix element is determined by masses and leading order Isgur-Wise function
[Leibovich, ZL, Stewart, Wise, hep-ph/9703213, hep-ph/9705467]
Kinematic range: $1 \leq w \lesssim 1.3$ and in the τ case $1 \leq w \lesssim 1.2$
Meson masses: $\quad m_{H_{ \pm}}=m_{Q}+\bar{\Lambda}^{H}-\frac{\lambda_{1}^{H}}{2 m_{Q}} \pm \frac{n_{\mp} \lambda_{2}^{H}}{2 m_{Q}}+\ldots \quad n_{ \pm}=2 J_{ \pm}+1$
For example:

$$
\begin{gathered}
\frac{\left\langle D_{1}\left(v^{\prime}, \epsilon\right)\right| V^{\mu}|B(v)\rangle}{\sqrt{m_{D_{1}} m_{B}}}=f_{V_{1}} \epsilon^{* \mu}+\left(f_{V_{2}} v^{\mu}+f_{V_{3}} v^{\prime \mu}\right)\left(\epsilon^{*} \cdot v\right) \\
\sqrt{6} f_{V_{1}}(w)=\left(1-w^{2}\right) \tau(w)-4 \frac{\bar{\Lambda}^{\prime}-\bar{\Lambda}}{m_{c}} \tau(w)+\mathcal{O}\left(\frac{w-1}{m_{c, b}}\right)+\ldots
\end{gathered}
$$

- These "known" $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{c, b}\right)$ terms are numerically very important
- No expressions in the literature for $B \rightarrow D^{* *} \tau \bar{\nu}$ rates at all - fixing this...

University of ZL-p. 24

Predictions for spectra

Rates for e, μ vs. τ
[Data from Belle, 0711.3252]

- Study all uncertainties, including effects neglected in LLSW
- As for $B \rightarrow D^{(*)} \ell \bar{\nu}$, heavy quark symmetry relates the extra form factor in the τ mode to those with e, μ - finalizing the uncertainties

Complementary sensitivities to NP

- Complementary sensitivities

Different patterns in two blue bands

- 2 HDM just for illustration - explore influence of all possible non-SM operators

Final comments

Conclusions

- $B \rightarrow D^{(*)} \tau \bar{\nu}$: amusing if NP shows up in an operator w/o much SM suppression
- SM predictions can be systematically improved with more data
- There are good operator fits, and (somewhat) sensible MFV leptoquark models (Fairly wild scenarios still viable)
- Measurements will improve in the next decade by nearly an order of magnitude (Even if central values change, plenty of room for significant deviations from SM)
- More theory progress to come, will impact measurements and sensitivity to BSM

Bonus slides

BaBar statements from q^{2} spectrum results

- BaBar studied consistency of rates with 2 HDM , and $\mathrm{d} \Gamma / \mathrm{d} q^{2}$ with several models

[PRL 109 (2012) 101802, arXiv:1205.5442]
[PRD 88 (2013) 072012, arXiv:1303.0571]
- Found that type-II 2HDM gave nearly as bad fit to the data as the SM
- $\mathrm{d} \Gamma / \mathrm{d} q^{2}$ has additional discriminating power (no other distribution measured yet)
- No public info on bin-to-bin correlations, eyeball which solutions are (dis)favored

University of

Survey of MFV model

- Scalars: Need $C_{S_{L}} / C_{S_{R}} \sim \mathcal{O}(1)$

Hard to avoid y_{c} suppression or $\mathcal{O}(1)$ coupling to 1st generation

- Vectors: Rescaling the SM operator $\left(O_{V_{L}}\right)$ gives good fit to the data Flavor singlet excluded by LHC, simplest charges don't work w/o assumptions
If dynamics allows $W^{\prime} \bar{Q}_{L}^{3} Q_{L}^{3}$, but not $W^{\prime} \bar{Q}_{L}^{i} Q_{L}^{i}$, viable models exist; beyond MFV [Greljo, Isidori, Marzocca, 1506.0170]
- Leptoquarks: Viable MFV models exist

Simplest choices - leptoquarks could be electroweak $S U(2)_{L}$ singlets or triplets:

$$
\begin{array}{lll}
\text { scalars: } S \sim(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1}), & (\mathbf{1}, \overline{\mathbf{3}}, \mathbf{1}), & (\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}}) \\
\text { vectors: } U_{\mu} \sim(\mathbf{3}, \mathbf{1}, \mathbf{1}), & (\mathbf{1}, \mathbf{3}, \mathbf{1}), & (\mathbf{1}, \mathbf{1}, \mathbf{3})
\end{array}
$$

- Possibly viable: $S(\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}})$ and $U_{\mu}(\mathbf{1}, \mathbf{1}, \mathbf{3}) \Rightarrow$ consider in more detail

Both can be electroweak singlets or triplets

Excluding MFV scalars and vectors

- Scalars: Need comparable values of $C_{S_{L}}$ and $C_{S_{R}}$

If $H^{ \pm}$flavor singlet, $C_{S_{L}} \propto y_{c}$, so cannot fit $R\left(D^{(*)}\right)$ keeping y_{t} perturbative
If $H^{ \pm}$is charged under flavor (combination of Y-s, to couple to quarks \& leptons), to generate $C_{S_{L}} \sim C_{S_{R}}$, some $\mathcal{O}(1)$ coupling to 1 st generation quarks unavoidable Bounds on $4 q$ or $2 q 2 \ell$ operators exclude it

- Vectors: Rescaling the SM operator $\left(O_{V_{L}}\right)$ gives good fit to the data Flavor singlet w/ W-like couplings: $m_{W^{\prime}} \gtrsim 1.8 \mathrm{TeV} \Longleftrightarrow 0.2 \sim g^{2}\left|V_{c b}\right|\left(1 \mathrm{TeV} / m_{W^{\prime}}\right)^{2}$ Couplings to u, d suppressed for $(\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1})$ and $(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3})$ under $U(3)_{Q} \times U(3)_{u} \times U(3)_{d}$ $(\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1}): b \rightarrow c$ transitions suppressed by y_{c}, too small
$(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3})$: can fit data if $y_{b}=\mathcal{O}(1)$, but excluded by tree-level FCNC via $W^{\prime 0}$
(If dynamics allows $W^{\prime} \bar{Q}_{L}^{3} Q_{L}^{3}$, but not $W^{\prime} \bar{Q}_{L}^{i} Q_{L}^{i}$, viable models exist; beyond MFV [Greljo, Isidori, Marzocca, 1506.0170])

University of
$Z L-$ p. iii
Zurich ${ }^{\text {UZH }}$

MFV leptoquarks

- Assign charges under flavor sym.:

$$
U(3)_{Q} \times U(3)_{u} \times U(3)_{d}
$$

- Simplest choices - leptoquarks could be electroweak $S U(2)_{L}$ singlets or triplets:

$$
\begin{aligned}
& \text { scalars: } S \sim(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1}), \quad(\mathbf{1}, \overline{\mathbf{3}}, \mathbf{1}), \quad(\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}}) \\
& \text { vectors: } U_{\mu} \sim(\mathbf{3}, \mathbf{1}, \mathbf{1}), \quad(\mathbf{1}, \mathbf{3}, \mathbf{1}), \quad(\mathbf{1}, \mathbf{1}, \mathbf{3})
\end{aligned}
$$

$S(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})$ and $U_{\mu}(\mathbf{3}, \mathbf{1}, \mathbf{1})$ give large $p p \rightarrow \tau^{+} \tau^{-}$, excluded by Z^{\prime} searches
$S(\mathbf{1}, \overline{\mathbf{3}}, \mathbf{1})$ and $U_{\mu}(\mathbf{1}, \mathbf{3}, \mathbf{1})$ give y_{c} suppressed $B \rightarrow D^{(*)} \tau \bar{\nu}$ contributions
\Rightarrow too large couplings, or too light leptoquarks

- Possibly viable: $S(\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}})$ and $U_{\mu}(\mathbf{1}, \mathbf{1}, \mathbf{3}) \Rightarrow$ consider in more detail

Both can be electroweak singlets or triplets

The $S(1,1, \overline{3})$ scalar LQ

- Interactions terms for electroweak singlet:

$$
\begin{aligned}
\mathcal{L} & =S\left(\lambda Y_{d}^{\dagger} \bar{q}_{L}^{c} i \tau_{2} \ell_{L}+\tilde{\lambda} Y_{d}^{\dagger} Y_{u} \bar{u}_{R}^{c} e_{R}\right) \\
& =S_{i}\left(\lambda y_{d_{i}} V_{j i}^{*} \bar{u}_{L j}^{c} e_{L}-\lambda y_{d_{i}} \bar{d}_{L i}^{c} \nu_{L}+\tilde{\lambda} y_{d_{i}} y_{u_{j}} V_{j i}^{*} \bar{u}_{R j}^{c} e_{R}\right)
\end{aligned}
$$

Integrating out S, contribution to $R\left(X_{c}\right)$ via: $\quad\left(m_{S_{3}} \neq m_{S_{1}}=m_{S_{2}}\right)$

$$
-\frac{V_{c b}^{*}}{m_{S_{3}}^{2}}\left(\lambda^{2} y_{b}^{2} \mathcal{O}_{S_{R}}^{\prime \prime}+\lambda \tilde{\lambda} y_{c} y_{b}^{2} \mathcal{O}_{S_{L}}^{\prime \prime}\right)
$$

[electroweak triplet has no $\tilde{\lambda}$ term]

- Can fit $R\left(D^{(*)}\right)$ data if $y_{b}=\mathcal{O}(1)$ Check $Z \tau^{+} \tau^{-}$constraints, etc.
- Leptons: (i) τ alignment, charge LQ and 3rd gen. leptons opposite under $U(1)_{\tau}$ (ii) lepton MFV, $(\mathbf{1}, \overline{\mathbf{3}})$ under $U(3)_{L} \times U(3)_{e} \quad$ [constraints differ]
- LHC Run 1 bounds on pair-produced LQ decaying to $t \tau$ or $b \nu, m_{S_{3}} \gtrsim 560 \mathrm{GeV}$

Constraints from $b \rightarrow s \nu \bar{\nu}$

- With three Yukawa spurion insertions, one can write:

$$
\delta \mathcal{L}^{\prime}=\lambda^{\prime} S Y_{d}^{\dagger} Y_{u} Y_{u}^{\dagger} \bar{q}_{L}^{c} i \tau_{2} \ell_{L}
$$

- Generates four-fermion operator:

$$
\frac{V_{t b}^{*} V_{t s}}{2 m_{S_{3}}^{2}} y_{t}^{2} y_{b}^{2} \lambda^{\prime} \lambda\left(\bar{b}_{L} \gamma^{\mu} s_{L} \bar{\nu}_{L} \gamma_{\mu} \nu_{L}\right)
$$

- Current limits on $B \rightarrow K \nu \bar{\nu}$ imply: $\lambda^{\prime} / \lambda \lesssim 0.1$ - some suppression of λ^{\prime} required
- Electroweak singlet vector LQ is the only one of the four models w/o this constraint
(E.g., vector triplet has $\lambda^{\prime} \bar{q}_{L} Y_{u} Y_{u}^{\dagger} Y_{d} \boldsymbol{\tau} \gamma_{\mu} \ell_{L} \boldsymbol{U}^{\mu}$ term)
- If central values \& patterns change, more "mainstream" MFV models may fit

Many signals, tests, consequences

- LHC: several extensions to current searches would be interesting
- Extend \tilde{t} and \tilde{b} searches to higher prod. cross section
- Search for $t \rightarrow b \tau \bar{\nu}, c \tau^{+} \tau^{-}$nonresonant decays
- Search for states on-shell in t-channel, but not in s-channel
- Search for $t \tau$ resonances
- Low energy probes:
- Firm up $B \rightarrow D^{(*)} \tau \bar{\nu}$ rate and kinematic distributions; Cross checks w/inclusive
- Smaller theor. error in $\left[\mathrm{d} \Gamma\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right) / \mathrm{d} q^{2}\right] /\left[\mathrm{d} \Gamma\left(B \rightarrow D^{(*)} l \bar{\nu}\right) / \mathrm{d} q^{2}\right]$ at same q^{2}
- Improve bounds on $\mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)$
- $\mathcal{B}(D \rightarrow \pi \nu \bar{\nu}) \sim 10^{-5}$ possible, maybe BES III; enhanced $\mathcal{B}\left(D \rightarrow \mu^{+} \mu^{-}\right)$
- $\mathcal{B}\left(B_{s} \rightarrow \tau^{+} \tau^{-}\right) \sim 10^{-3}$ possible

Not excluded?

- LQ pair production
- top decays
- t-channel non-resonant $l^{+} l^{-}$production
- LEP $Z \rightarrow l^{+} l^{-}$, HERA LQ production
- $c \bar{c} e^{+} e^{-}$contact interaction / compositness
- $B-\bar{B}$ mixing, $K-\bar{K}$ mixing, $D-\bar{D}$ mixing
- $B \rightarrow X_{s} \nu \bar{\nu}, K \rightarrow \pi \nu \bar{\nu}$
- $D \rightarrow l^{+} l^{-}$at tree level
- $B^{-} \rightarrow \mu \bar{\nu}$ at tree level
- $B_{s} \rightarrow \mu^{+} \mu^{-}$and $K_{L} \rightarrow \mu^{+} \mu^{-}$at one loop
- Strongest constraint from ϵ_{K} :

$$
\begin{aligned}
\left|\epsilon_{K}\right|_{\mathrm{SM}} & =\frac{G_{F}^{2} m_{W}^{2} m_{K} f_{K}^{2}}{6 \sqrt{2} \pi^{2} \Delta m_{K}} \hat{B}_{K} \kappa_{\epsilon}\left|V_{c b}\right|^{2} \lambda^{2} \bar{\eta}\left[\left|V_{c b}\right|^{2}(1-\bar{\rho}) \eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right] \\
\left|\epsilon_{K}\right|_{\exp } & =(2.23 \pm 0.01) \times 10^{-3} \quad \text { vs. } \quad\left|\epsilon_{K}\right|_{\mathrm{SM}}=(1.81 \pm 0.28) \times 10^{-3} \quad[\text { Brod \& Gorbahn, 2011] }]
\end{aligned}
$$

- Uncertainties big enough to allow for 5-10\% enhancement of $\left|V_{c b}\right|$
- The $R\left(D^{(*)}\right)$ excess may shrink and be significant; can also make cocktails...
- Even an enhancement much smaller than today can become 5σ in the future

