

Invisibles 17
Augusto Ceccucci / CERN
Zurich, June 13, 2017

STATUS AND PLANS OF NA62

NA62 COLLABORATION

29 Institutes, 230 Collaborators

Why Kaon Physics in the 3rd Millennium?

- The Standard Model (SM) was largely built from kaons...
 - Theta-tau puzzle and the fall of Parity Conservation
 - Strangeness and flavour conservation in Strong Interactions
 - Universality of the Weak Interaction
 - Absence of Flavour Changing Neutral Currents (FCNC) and GIM Mechanism → prediction of charm
 - CP-Violation: ε and ε'/ε
- ...Kaon decays are a powerful tool to:
 - Go beyond the SM looking for New Physics in rare decays
 - Study non-perturbative aspects of the Strong Interaction: π - π scattering, CHPT, hadron structure
 - Look for non-universal lepton couplings
 - CKM unitarity tests & flavour mixing
 - Search for long-lived low energy neutral particles

Quark flavor physics

Triumph of the CKM description

• All the flavour changing processes are described by the four parameters of the CKM mass mixing matrix (λ, A, ρ, η)

• From this plot, we know already either new physics energy scale is >> TeV (far beyond LHC) or the flavour structure of new physics is very special.

ICHEP 2016 -- I. Shipsey

$K \rightarrow \pi \nu \bar{\nu}$ and the unitarity triangle

Dominant uncertainties for SM BRs are from CKM matrix elements

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407} \right]^{2.8} \cdot \left[\frac{\gamma}{73.2^{\circ}} \right]^{0.74}$$

Buras et al., JHEP 1511

$$BR(K_L \to \pi^0 v \bar{v}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}} \right]^2 \cdot \left[\frac{|V_{cb}|}{0.0407} \right]^2 \cdot \left[\frac{\sin \gamma}{\sin 73.2^{\circ}} \right]^2$$

- Intrinsic theory uncertainties ~ few percent
- BR measurements for both K^+ and K_L determine the unitarity triangle independently from ${\it B}$ inputs
 - Overconstrain CKM matrix → reveal NP?

Prospects to measure $K_L \to \pi^0 \nu \nu$ at the SPS – M. Moulson (Frascati) – Physics Beyond Colliders – CERN – 7 Sept 2016

SM prediction [Buras et al. JHEP 1511 (2015) 33]

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \cdot 10^{-11}$$

Experimental status (E787, E949)

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$$

[Phys. Rev. D 77, 052003 (2008), Phys. Rev. D 79, 092004 (2009)]

Simplified New Physics Models

Probing Lepton Flavour Universality with $K \rightarrow \pi vv$ decays

Bordone, Buttazzo, Isidori, Monnard

$$\mathcal{B}(B \to D^{(*)}\tau\bar{\nu}) = \mathcal{B}(B \to D^{(*)}\tau\bar{\nu})_{\rm SM} \left| 1 + R_0 \left(1 - \theta_q e^{-i\phi_q} \right) \right|^2 \qquad R_0 = \frac{1}{\Lambda^2} \frac{1}{\sqrt{2}G_F}$$

$$\mathcal{B}(K_L \to \pi^0 \nu\bar{\nu}) = 2\mathcal{B}(K_L \to \pi^0 \nu_e \bar{\nu}_e)_{\rm SM} + \mathcal{B}(K_L \to \pi^0 \nu_\tau \bar{\nu}_\tau)_{\rm SM} \left| 1 - \frac{R_0 \, \theta_q^2 (1 - c_{13})}{(\alpha/\pi)(X_t/s_w^2)} \right|^2$$

Varying θ_{q} :

arXiv:1705.10729v1

NA62 NOVEL IN-FLIGHT TECHNIQUE

\$\frac{162}{5} \text{\$\bar{d}{\quad v}} \tag{d}

- TO MEASURE $K^+ \rightarrow \pi^+ \nu \overline{\nu}$
- ~100 ps timing for K^+ π^+ association (KTAG, GTK, RICH)
- EM Calorimeters to veto photons (LAV, LKr, SAC, IRC), hadron calorimeters (MUV1, MUV2, HASC) and hodoscopes to veto muons (MUV0, MUV3), extra particles (CHOD, NewCHOD) and interactions (CHANTI)
- Very light, high rate trackers to reconstruct the K^+ and the π^+ momenta (GTK, STRAW)

• Full particle identification (KTAG, RICH)

NA62 SCHEMATIC LAYOUT

JINST 12 (2017) no.05, P05025

 10^{12} /s protons from SPS (400 GeV/c) on Be target (~1 λ)

SPS K12 Beam: 750 MHz, 75 GeV/c

- Positive polarity
- •Kaon fraction ~6%
- • Δ p/p ~ 1%
- •Useful kaon decays ~10% (5 MHz)

Residual pressure in decay tank ~10-6 mbar

NA62 is built for a specific "silver bullet" measurement. This requires high beam rate, full PID, hermetic coverage, very light, high-rate tracking and state-of-the-art trigger and DAQ

It paves the way to a broad physics program in kaon decays (LFV, LU, CHPT) and beyond (HNL, Exotics, Dark Sector etc.)

STATUS OF NA62 IN A NUTSHELL

- 2016: Commissioning + Physics Data Taking
- Collected ~ 5 $10^{11} K^+$ decays "good for PNN" in 2016
- 5% of the 2016 statistics analyzed (presented here)
- 2017 Run under way, take data until October 22
- Extrapolating from 2016, we expect ~ 15 PNN Standard Model events in 2017
- With usual end-of-the-year break, data taking will resume in 2018 until CERN Long-Shutdown 2 (2019-2020)
- We are planning to extend data beyond LS2 to complete the proposed programme and to implement new ideas (see later)
- Technical details on NA62 can be found in the recently published Beam and Detector paper: JINST 12 P50025, arXiv:1703.08501

NA62 TIMING

_3

-2

 $t_{hit} - t_{KTAG} [ns]$

For NA62 is essential to have a flat SPS slow extraction: both microscopically and macroscopically

-112

-111.5

-111

T_{RICH}-T_{KTAG} (ns)

-400 -400 -300 -200 -100 0 100 200 300 400

A62 5 d

DECAY REGION

- The plot shows tracks from tagged kaon decays
- The sharp edge is the position of the last GTK station
- The signal region in momentum is limited from 15 to 35 in order to:
- 1. Have at least 40 GeV of EM energy associated to a $K^+ \rightarrow \pi^+ \pi^0$ decay
- 2. Have excellent pi/mu separation with a RICH with Neon as radiator at atmospheric pressure
- The fiducial region starts several meters downstream of the GTK3 position to control early decays and inelastic interactions producing (e.g.) K⁰_S

VELOCITY AND MAGNETIC SPECTROMETERS

- The missing mass can be computed using the momentum determined either by the magnetic spectrometer or by the RICH assuming the pion mass
- This allows one to measure $K^+ \rightarrow \pi^+ \pi^0$ tails due to angular measurements

NA62 RICH

Vessel being pumped for Neon filling

PI-MU SEPARATION

- \bullet 2/3 of Kaons decay in $\mu \nu$
- Calorimetry and RICH are orthogonal techniques to reject muons
- Combined together they provide a very strong muon suppression

π⁺ Detection

NA62 STRAW TRACKER

NA62 KINEMATICS

Single track events tagged to originate from a kaon decay

Missing Mass Resolution for single track events

NA62 PIO REJECTION

PIO REJECTION

Gaussian RMS and mean from fit before γ -reject.

$$\epsilon_{\pi^0} = (1.2 \pm 0.2) \times 10^{-7}$$

πνν accidental losses

5% 2016 STATISTICS

$K^+ \rightarrow \pi^+ \nu \nu$

- Flux: 2.3 x 10¹⁰ K⁺
- Expected Backgrounds:
 - $K^+ \to \pi^+ \pi^0$ 0.024
 - $K^+ \rightarrow \mu^+ \nu$ 0.011
 - $K^+ \rightarrow \pi^+ \pi^+ \pi^- 0.017$
 - Early decays < 0.005</p>
- Expected SM signal:0.064[Acceptance 3.3% to be improved]
- Observed 0
 [the event in the box has m²_{miss}(no GTK) outside signal region]

EXOTIC SEARCHES

 Dark Photons (A'), Heavy Neutral Leptons (HNL), Axion-like particles (ALP)

• Production and decays:

- Protons on target \rightarrow mesons \rightarrow A'/HNL; A' \rightarrow l⁺l⁻, HNL \rightarrow $\pi\mu$
- Protons on Dump (Copper) \rightarrow ALP $\rightarrow \gamma \gamma$

Run 2016

- A'/HNL: Triggers for 2-body final states taken concurrently with PNN (10¹⁷ POT)
- ALP: A few hours special run (dump) to improve existing 2-photon limits

INVISIBLE VECTOR BOSON

$K^+ \rightarrow \pi^+ \pi^0, \pi^0 \rightarrow A'\gamma, A' \rightarrow Invisible$

NA62 sensitivity for LFNV decays

Decays in FV in 2 years of data

$$\begin{bmatrix} 1 \times 10^{13} \ K^{+} \text{ decays} \\ 2 \times 10^{12} \ \pi^{0} \text{ decays} \end{bmatrix}$$

Single-event sensitivity 1/(decays × acceptance)

Mode	UL at 90% CL	Experiment	NA62 acceptance*	
$K^+ \rightarrow \pi^+ \mu^+ e^-$	1.3×10^{-11}	BNL 777/865	~10%	
$K^+ \longrightarrow \pi^+ \mu^- e^+$	5.2×10^{-10}	BNL 865		
$K^+ \rightarrow \pi^- \mu^+ e^+$	5.0×10^{-10}	BNL 865	~10%	
$K^+ \longrightarrow \pi^- e^+ e^+$	6.4×10^{-10}	BNL 865	~5%	
$K^{\scriptscriptstyle +} \longrightarrow \pi^{\scriptscriptstyle -} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle +}$	1.1×10^{-9}	NA48/2	~20%	
$K^+ \rightarrow \mu^- v e^+ e^+$	2.0×10^{-8}	Geneva Saclay	~2%	
$K^+ \rightarrow e^- v \mu^+ \mu^+$	no data		~10%	
$\pi^0 \longrightarrow \mu^+ e^-$	2.6 10-10	KTeV	~2%	
$\pi^0 \rightarrow \mu^- e^+$	3.6×10^{-10}	Riev		

^{*} From fast Monte Carlo simulation with flat phase-space distribution. Includes trigger efficiency.

NA62 single-event sensitivities:

~10⁻¹² for
$$K^+$$
 decays ~10⁻¹¹ for π^0 decays

RARE AND FORBIDDEN DECAYS

- 2016 Data
- Trigger: multi-track, dilepton
- <1% background</p>
- Competitive limits on Lepton Number Violation

Rare π^0 decays in NA62

$2 \times 10^{12} \ \pi^0$ decays in FV in 2 years of data will allow substantial improvement of results in many channels

Mode	Current knowledge	Experiment	Expectation in SM	Physics interest		
Neutral modes						
$\pi^0 \longrightarrow 3\gamma$	$BR_{90CL} < 3.1 \times 10^{-8}$	Crystal Box	Forbidden	Violates C		
$\pi^0 o 4\gamma$	BR _{90CL} < 2×10 ⁻⁸	Crystal Box	BR ~ 10 ⁻¹¹	Scalar states $\pi^0 \to SS$		
$\pi^0 ightarrow inv$	$BR_{90CL} < 2.7 \times 10^{-7}$	BNL 949	BR < 10 ⁻¹³ (cosm. limit)	N_{v} , LFV		
Charged modes						
$\pi^0 \rightarrow e^+ e^- e^+ e^-$	BR = $3.34(16) \times 10^{-5}$	KTeV	3.26(18) ×10 ⁻⁵	Off-shell vectors		
$\pi^0 \rightarrow e^+ e^- \gamma$	$\begin{array}{c} {\rm BR_{95CL}}(\pi^0{\to}U\gamma):\\ <{\rm 1\times10^5},M_U={\rm 30~MeV}\\ <{\rm 3\times10^6},M_U={\rm 100~MeV} \end{array}$	WASA/COSY	Null result	Dark forces		

Search for $K^+ \rightarrow \mu^+ \nu_h$

$$B_{UL}\left(K^{+} \to \mu^{+} \nu_{h}\right) = \frac{n_{UL}}{N_{K} \times A(m_{h})}$$

$$|U_{\mu 4}|^2 = \frac{\mathcal{B}(K^+ \to \mu^+ \nu_h)}{\mathcal{B}(K^+ \to \mu^+ \nu_\mu)} \times \frac{1}{f(m_h)}$$

Physics at NA62 in Run 3

A rich field to be explored with minimal/no upgrades to the present setup

- 0. If needed, run for refining πvv measurement
- 1. Present K⁺ beam setup + dedicated runs: unprecedented LFV/LNV sensitivities from K⁺/ π^0
- 2. Year-long run in "beam-dump" mode, new program of NP searches for MeV-GeV mass hidden-sector candidates: Dark photons, Heavy neutral leptons, Axions/ALP's, etc.

Search for visible decays of long-lived A'

- Search for displaced dilepton decays of dark photons, A'→ee, μμ
- Expected 90% CL plot evaluation: assuming 2x10¹⁸ 400 GeV POT; zero background; trigger, acceptance and selection efficiency

Sensitivity expected to be even higher: including direct QCD production of A'; production in the TAX (only target considered here)

Search for visible decays of HNL

- Search for displaced decays of HNL→πe, πμ
- Expected 90% CL plot evaluation: assuming 2x10¹⁸ 400 GeV POT; zero background; trigger, acceptance and selection efficiency

Search for visible decays of ALPs

- Search for decays of ALP→γγ in the NA62 fiducial volume
- Expected 90% CL plot evaluation: assuming 1.3x10¹⁶ (3.9x10¹⁷) 400 GeV POT corresponding to 1 day (1 month) runs; zero background; geometrical acceptance;

Test of the zero background assumption

[In "Beam" Mode, result in "Dump" mode in preparation]

Event selection: track quality + acceptance cuts

two track vertex: cda < 1 cm position 105 < Z < 165 m

Stat. corresponds to ~10¹⁵ POT

- Event-level veto conditions: energy in LKr <2 GeV veto on forward/large angle calorimeters veto on charged anti-counter
- **Total momentum stems from target**

Z of closest approach of Ptot to beam line (m)

No events selected in the signal region!

An experiment to measure $K_L \to \pi^0 \nu \bar{\nu}$

For 60 SM events, need:

 $5 \times 10^{19} \text{ pot}$

E.g. 2×10^{13} ppp/16.8 s × 5 yrs

 $\langle p_K \rangle$ = 70 GeV for decays in FV

Photons from $K_L \to \pi^0 \pi^0$ boosted forward for easier vetoing

Much higher energy than KOTO: Complementary approach

Main detector/veto systems:

AFC Active final collimator/upstream veto

LAV1-26 Large-angle vetoes (26 stations)

LKr NA48 liquid-krypton calorimeter

IRC/SAC Small-angle vetoes

CPV Charged-particle veto

NA62 5 d

SUMMARY

- In 2016 NA62 performed the transition from commissioning to data taking/analysis
- Run 2017 well under way
- Incremental improvements to data taking efficiency, trigger and beam intensity planned for 2017 in order to fulfil our objective to collecting approx. 10¹³ kaon decays before LS2
- Broad road physics portfolio
- There are plans to extend the experiment after LS2 to also explore the "Invisibles" using the NA62 detector and ideas to go even further!

LHC roadmap: according to MTP 2016-2020

LS2 starting in 2019

=> 24 months + 3 months BC

LS3 LHC: starting in 2024

=> 30 months + 3 months BC

Injectors: in 2025 => 13 months + 3 months BC

