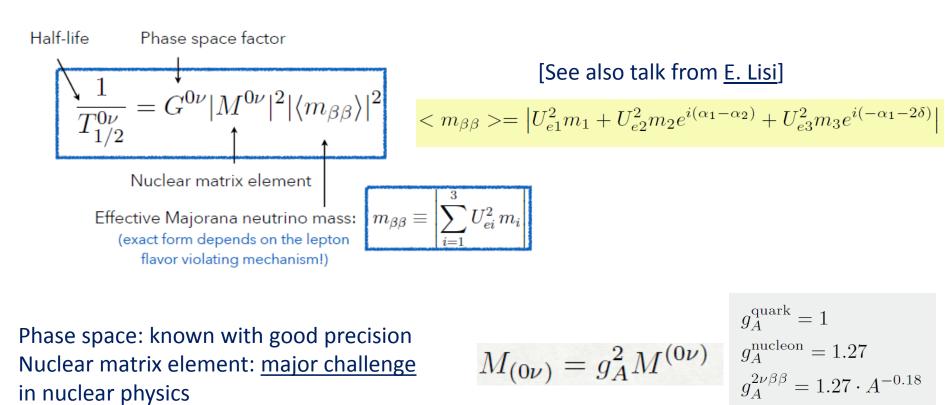

The search for neutrino-less double beta decay

A (Europe-focused) review of current **experiments** and of the impressive results achieved in the last two years Experimental strategies for the **next generation** Why such a growth of interest in this field, **right now**?

F. Terranova, Univ. of Milano Bicocca and INFN

Neutrino-less double beta decay (NLDBD)


To date, NLDBD is the only viable option to show that neutrinos are Majorana particles $(\nu = \bar{\nu})$

Experimental observation of neutrino-less double beta decay

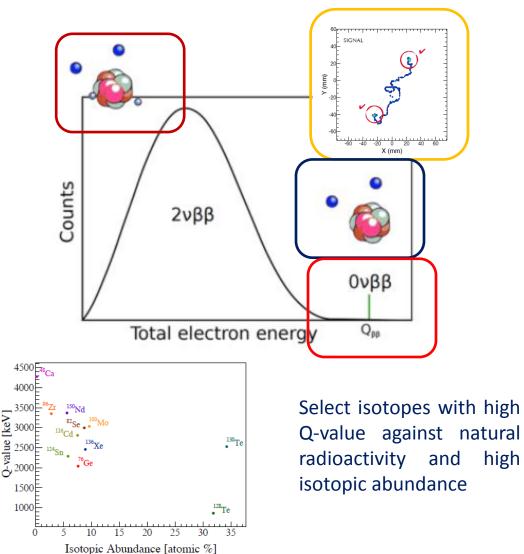
It will establish violation of lepton number in particle physics Shed light on mass generation mechanisms and the smallness of neutrino masses Open a window to
understand matterProvide informationunderstand matteron the size anddominancein thepatternof neutrinouniversemasses

NLDBD and neutrino masses

The decay half-life is connected in a non trivial manner to the neutrino masses

Linked to neutrino eigenstate (as cosmology), mixing angles (as oscillations) $m_{\beta\beta}$

and Majorana CP violating phases (unique!)

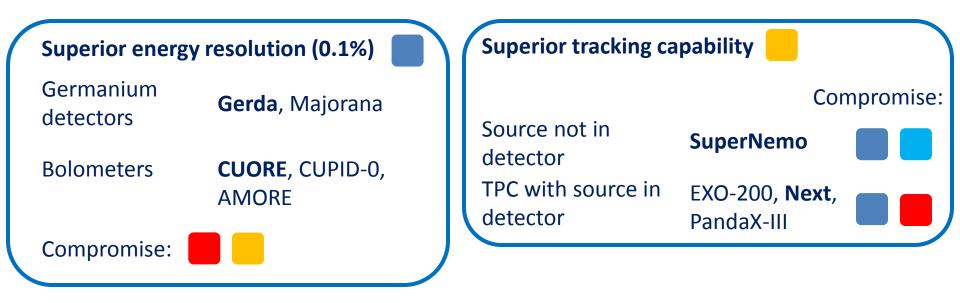

 $g^{0\nu\beta\beta}_{A} = ??$

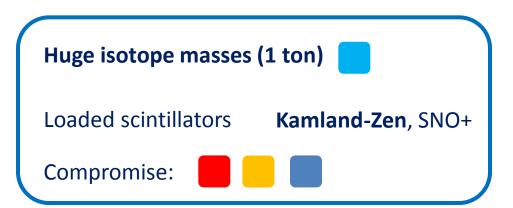
If neutrino are Majorana particles, oscillation data provide guidance for the NLDBD half time. Still, the constraints are loose and a lot of work is needed to reduce the uncertainties on M and g_A .

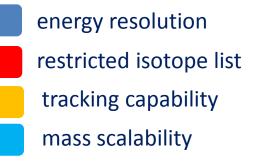
The perfect experiment

The experimental signature of NLDBD is extremely simple: two electrons whose energy sum (Q-value) is known in advance with very high precision (Penning traps). "Intrinsic" background: (A,Z) \rightarrow (A,Z+2) 2e⁻ 2v

high

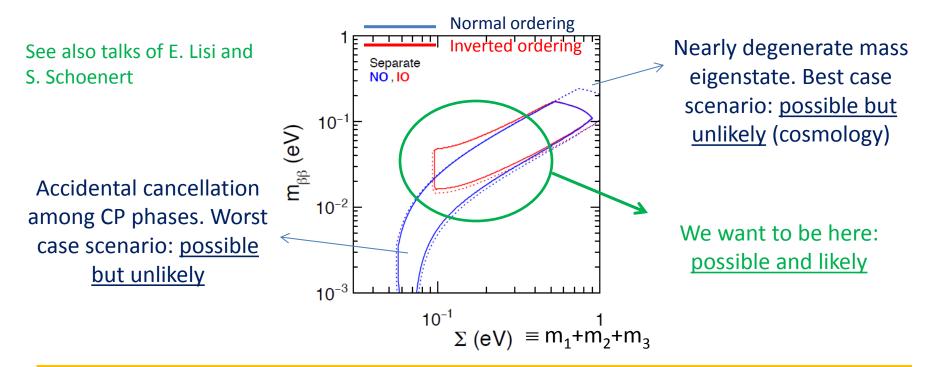

Track the out-coming electrons to separate α , β , γ from $\beta\beta$


Choose the detector with the best energy resolution (<1% FWHM) to reduce the "intrinsic" 2v background


$\beta\beta$ Decay Reaction	Isotopic Abundance	Q-value
	[atomic %]	$[\mathrm{keV}]$
$^{48}\text{Ca}{ ightarrow}^{48}\text{Ti}$	0.2	4274
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	7.6	2039
$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	8.7	2996
$^{96}\text{Zr} \rightarrow ^{96}\text{Mo}$	2.8	3348
$^{100}Mo \rightarrow ^{100}Ru$	9.6	3034
$^{116}Cd \rightarrow ^{116}Sn$	7.5	2814
$^{124}\text{Sn} \rightarrow ^{124}\text{Te}$	5.8	2288
$^{128}\text{Te}{\rightarrow}^{128}\text{Xe}$	31.8	866
$^{130}\text{Te}{\rightarrow}^{130}\text{Xe}$	34.2	2528
136 Xe \rightarrow 136 Ba	8.9	2458
$^{150}\mathrm{Nd}{ ightarrow}^{150}\mathrm{Sm}$	5.6	3368

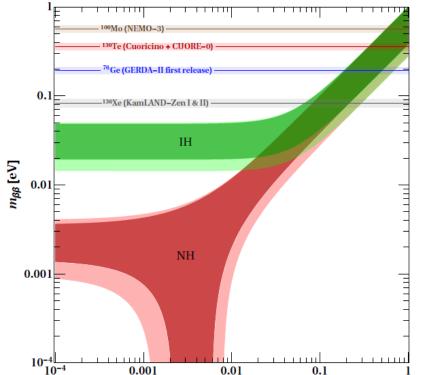
Back to earth....

The number of candidate isotopes is rather small and we often end up choosing among alternative options:



From the "perfect" to the "best" experiment

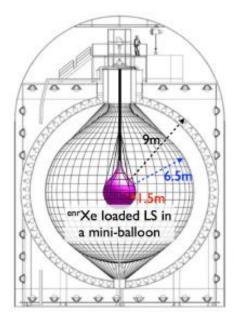
After 2012 (high precision measurement of all mixing angles), $m_{\beta\beta}$ is well constrained from neutrino (and cosmology) data. Now we know where to look for.



We are developing technologies that are able to explore NLDBD half-lifes at the level of 10^{26} y and that are potentially scalable up to 10^{28} y.

For "zero background experiments", sensitivity ~ exposure For finite background: sensitivity ~ (exposure)^{1/2}

The present generation of NLDBD experiment

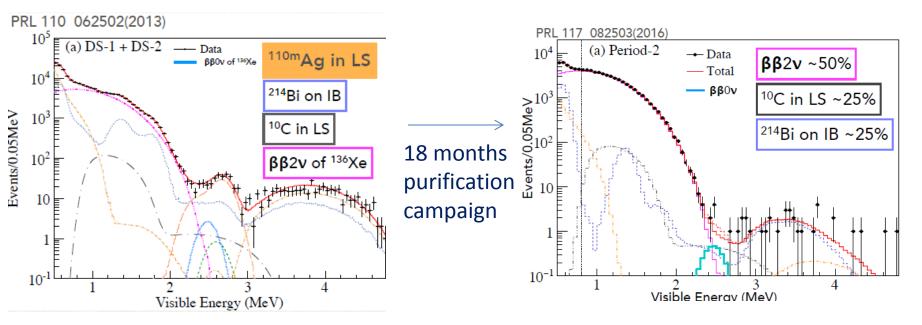


Osc. par.: F. Capozzi et al., Nucl. Phys. B 908, 218 (2016) NMEs (IBM-2): J. Barea et al., Phys. Rev. C 91, 034304 (2015) PSFs: J. Kotila, F. Iachello, Phys. Rev. C 85, 034316 (2012) $g_A = 1.269$

Experiment sensitivities:

¹⁰⁰ Mo: R. Arnold *et al.*, Phys. Rev. D 92, 072011 (2015)
 ¹³⁰ Te: K. Alfonso *et al.*, Phys. Rev. Lett. 115, 102502 (2015)
 ⁷⁶ Ge: M. Agostini, Presentation at Neutrino 2016
 ¹³⁶ Xe: A. Gando *et al.*, Phys. Rev. Lett. 117, 082503 (2016)

Kamland-Zen (Japan)

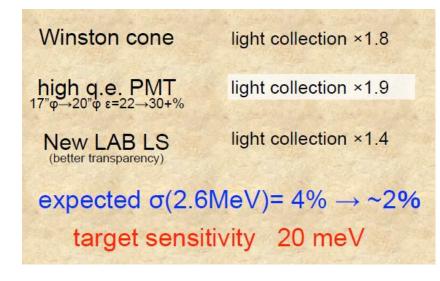


The world leader in the field and the paradigm of a scalable, finite-background experiment

Isotope: ¹³⁶Xe, Q-value = 2458 keV $T_{1/2} > 1.07 \times 10^{26}$ y (90 % CL)

- ✓ Active target 350 kg
- ✓ Energy resolution 4% at Q-value
- ✓ Position reconstruction: bkg rejection
- ✓ Bi-Po for ²¹⁴Bi, 3-fold coincidence for ¹⁰C

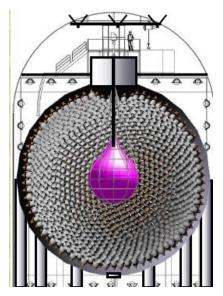
Unexpected background: ^{110m}Ag


The scalability of Kamland-Zen

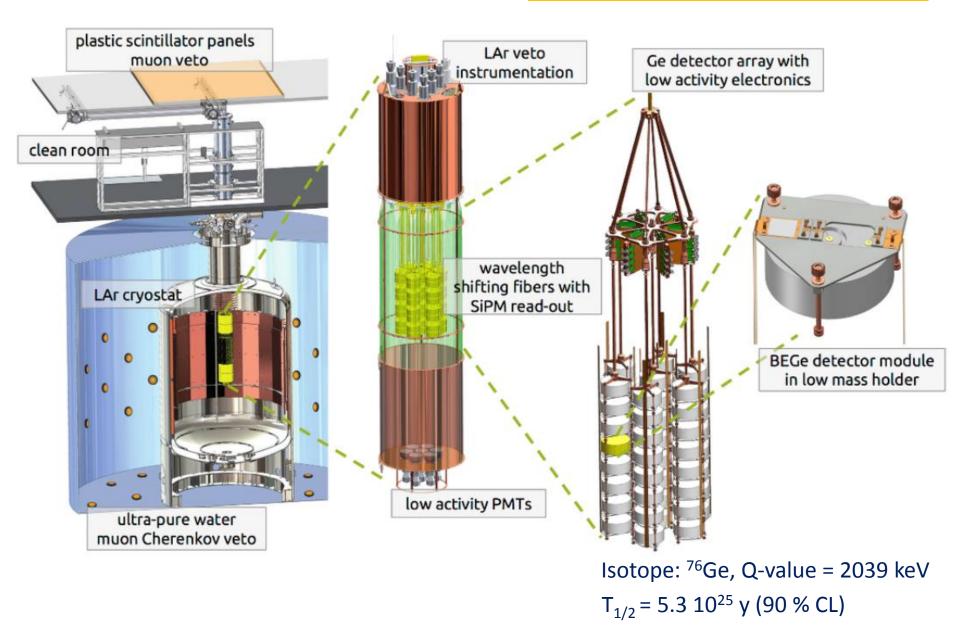
Phase III (Kamland-Zen 800) : 750 kg of enriched Xe.

- New clean Inner Balloon to reduce ²¹⁴Bi
- ✓ Improve ¹⁰C tag

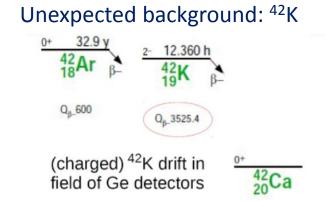
In progress. Slowed down by a leak in the balloon (see Y. Efremenko at MEDEX 2017)

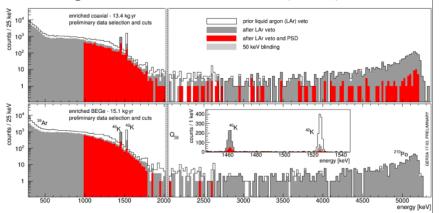

Improvement in energy resolution steers the long-term plans of Kamland2-Zen

Ultimate facility:

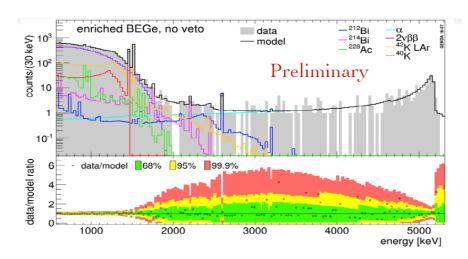

SuperKamland-ZEN in parallel with HyperKamiokande ?

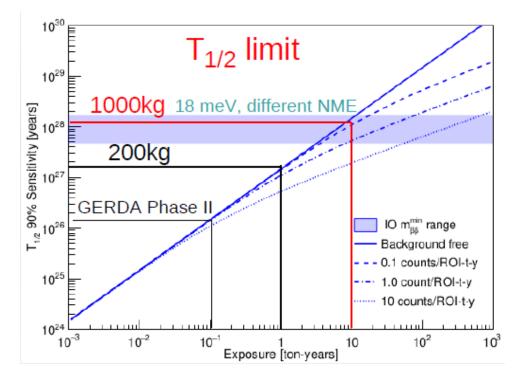
Similar consideraton apply to SNO+ (Canada) Not covered in this review


GERDA (Gran Sasso, Italy)


The paradigm of a scalable, zero background experiment

Both **GERDA** and **Majorana (US)** employ high-purity Germanium detector with 3 keV energy resolution at the ⁷⁶Ge Q-value. The 2v "intrinsic" background is not an issue neither for the current nor for the next generation of experiment

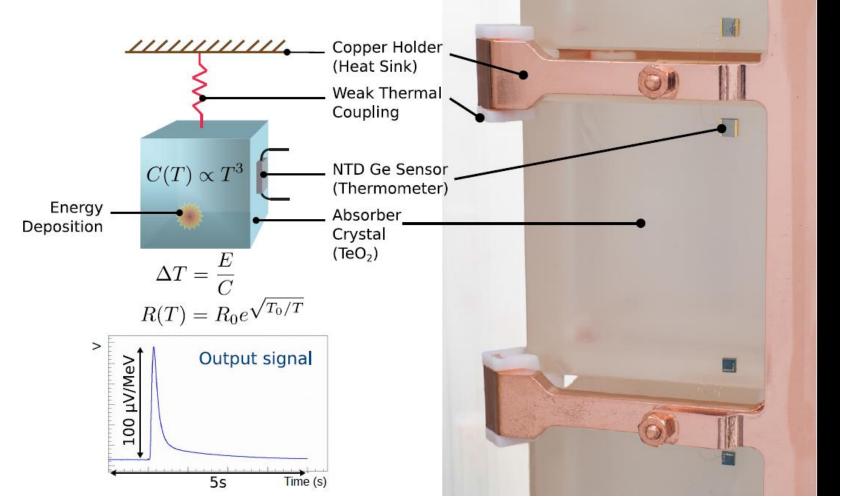

"Zero background" has been achieved in Gerda employing a liquid argon veto system and pulse shape analysis



M. Agostini et al. Nature 544 (2017) 47

Background index: 0.6 10⁻³ counts/keV kg y

The scalability of GERDA and Majorana

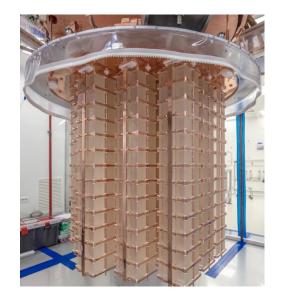

LEGEND (a new collaboration merging the expertise of GERDA and Majorana):

- up to 200 kg of ⁷⁶Ge in the present LNGS cryostat. Assume a reduction of 5 in background with respect to GERDA
- 1000 kg of ⁷⁶Ge in a new installation if Ge is chosen by the US down-select process. Further background reduction (1/30 of GERDA to stay in "zero background mode") is needed to fully exploit this facility.

See Talk of S. Schoenert

CUORE (Gran Sasso, Italy)

The largest bolometric experiment ever

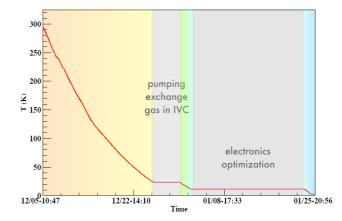

Isotope: ¹³⁰Te, Q-value = 2528 keV

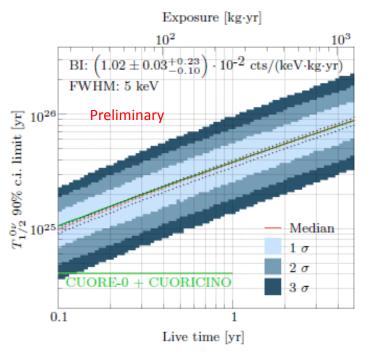
Mass: 206 kg of ¹³⁰Te (742 kg of TeO₂) Detectors: 988 TeO₂ bolometers (5x5x5 cm³) working at **a temperature of about 10 mK**

 $T_{1/2} > 4 \sim 10^{24}$ y (90 % CL) (combined CUORE-0 + Cuoricino)

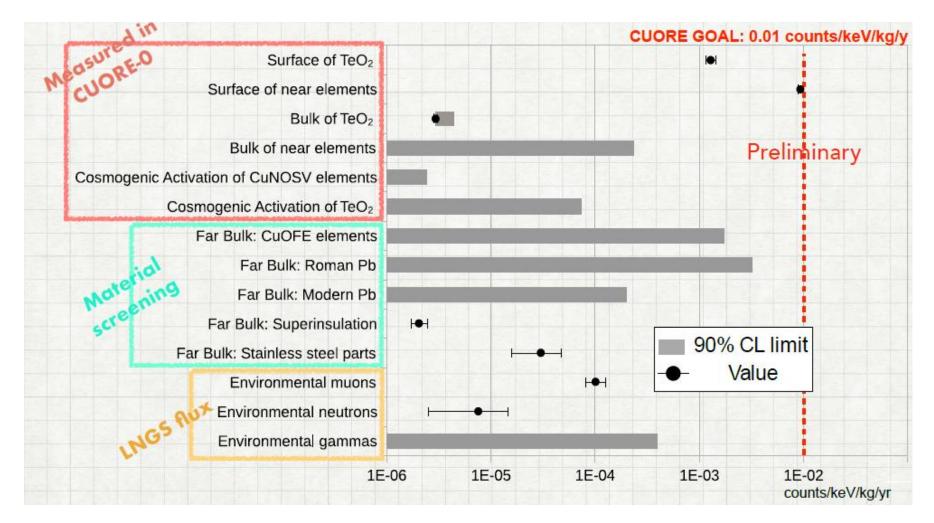
K. Alfonso et al., Phys. Rev. Lett. 115, 102502 (2015)

A very special year for CUORE


End of detector Shields, and electronics installation: Aug 2016 installed: Sep – Nov 2016


The first CUORE pulse (27 Jan)

End of commissioning and start of data taking: April 2017


Expected sensitivity: C. Alduino et al. arXiv:1705.10816 Diode thermometer at 10mK plate

Detector cooled down to base temperature (7 mK)

Background budget of CUORE

Background rejection in CUORE is achieved by the measurement of the energy deposited in the crystals, pulse-shape analysis and detector coincidences but...

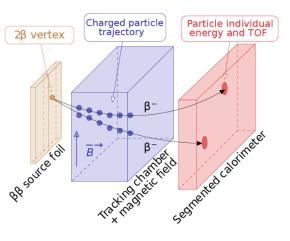
Scalability of the bolometric technique

Bolometers offer additional opportunities to reach the 10⁻⁴ counts/kg keV y regime

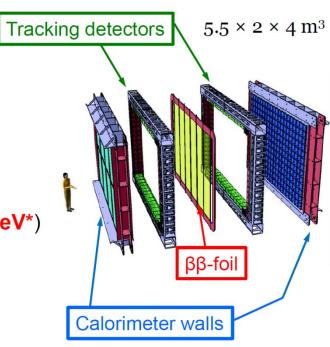
Observation of photons in scintillating bolometers (CUPID-0)

Observation of Cherenkov photons or surface effects in TeO₂ crystals

G. Wang et al. [CUPID Coll.] arXiv:1504.03599


CUPID-0 (⁸²Se, SeZn bolometers) expected background

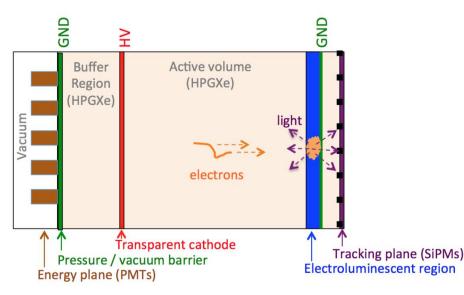
Eur. Phys. J. C76 (2016) 7, 364.


Background at $^{ m 82}$ Se ${ m Q}_{etaeta}$ (counts/keV/kg/y)		
after α discrimination	4×10^{-3}	
coincidences rejection	2.3×10^{-3}	
$^{208}\text{TI} - ^{212}\text{Bi}$ time delay rejection	1×10^{-3}	
+ cryostat γ contamination	$< 1.5 \times 10^{-3}$	

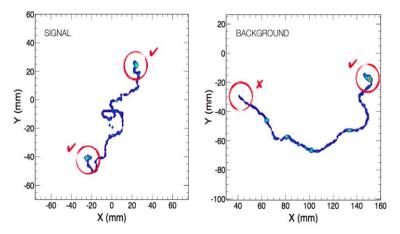
SuperNEMO (Modane, France)

- Modular geometry (20 modules)
- Planned start: 2017
- Placed in LSM (Modane, FRA)
- Studied isotope: ⁸²Se

- 7 kg of isotope (**100+ kg***) 0v $\beta\beta$: T_{1/2} > 6x10²⁴ yr (**10²⁶ yr***). Limit m_{$\beta\beta$}: 0,2-0,4 eV (**0,04 -0,11 eV***)
- * Full SuperNEMO design = 20 modules



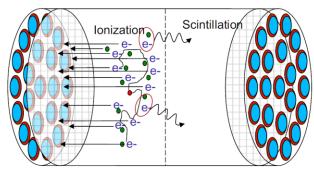
NEMO 2,3


Maximum flexibility in the choice of the isotope: **source outside detector** (⁸²Se, ¹⁵⁰Nd, ¹⁰⁰Mo) and outstanding precision in the **topology reconstruction**. It comes at the expenses of scalability and energy resolution

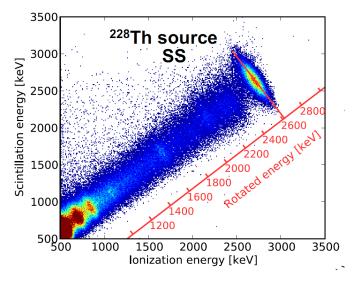
Isotope	T _{1/2} (yr)
⁸² Se	2.1×10 ²³
¹⁰⁰ Mo	1.1×10 ²⁴
¹¹⁶ Cd	1.6×10 ²²
⁹⁶ Zr	8.6×10 ²¹
¹⁵⁰ Nd	1.8×10 ²²
⁴⁸ Ca	1.3×10 ²²

NEXT (Canfranc, Spain) and (n)EXO (US)

High pressure gas TPC



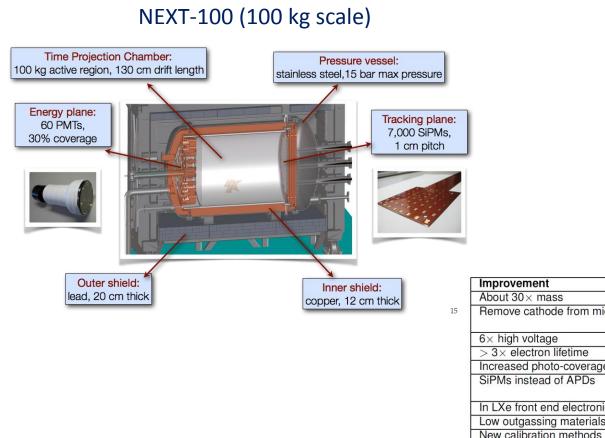
V. Alvarez et al, JINST 7 (2012) T06001

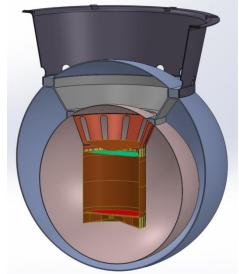

It is fortunate that ¹³⁶Xe is both a NLDBD candidate and a noble gas!

Isotope: ¹³⁶Xe, Q-value = 2458 keV $T_{1/2}$ = 1.1 10²⁵ y (90 % CL) (EXO-200)

Liquid Xe TPC

Charge collection -12kV




J.B. Albert et al, Nature 510 (2014) 229

Scalability of the Xe-TPC techniques

Both options have still large scalability potential using conventional techniques (**self shielding**, radio-purity assessment, background mitigation). Non conventional options (Ba tagging, diffusion reduction with dopants) under study.

nEXO (ton scale) at SNOLAB

Improvement	Reason
About 30× mass	Sensitivity to cover inverted hierarchy
Remove cathode from middle	Provide larger LXe-only volume in the middle with
	lower backgrounds.
$6 \times$ high voltage	Required to enable a longer drift length
> 3× electron lifetime	Required to enable a longer drift length
Increased photo-coverage	Energy resolution (to 1% σ/E), lower scintillation threshold
SiPMs instead of APDs	Higher gain, lower bias, better energy resolution,
	lower scintillation threshold, less material, lower radioactivity.
In LXe front end electronics	Lower noise, fewer cables, lower threshold to ID Compton
Low outgassing materials	Longer electron lifetime from higher purity LXe
New calibration methods	Required to calibrate "deep" detector
Deeper site	Reduced cosmogenic activation
Charge tiles instead of wires	3mm position resolution, simpler/smaller mechanical
	supports, lower radioactivity

Conclusions

Why **interest in NLDBD is growing** even if experimental searches started more than 70 years ago?

- ✓ Because the physics case became very strong after the discovery of neutrino oscillations
- ✓ Because the precise knowledge of mixing parameters drives our efforts toward the $T_{1/2} = 10^{26} 10^{28}$ y half life range

Are the experimental techniques mature enough?

 \checkmark T = 10²⁶ y is the present of NLDBD and major results are coming at very high speed:

EXO-200 (Nature, 2014), Kamland-Zen (PRL 2016), Gerda (Nature 2017) easy to predict that others will come soon (CUORE, e.g., is in data taking)

✓ Most of the technologies are scalable. The most promising remains: liquid scintillators, germanium, bolometers, tracking (e.g. with TPC) but we should keep an eye on ongoing R&D's (not covered in this talk)

Can a PhD student make a **breakthrough** in this field?

✓ Yes. No clear path to reach the T = 10^{29} y, which remains very interesting from the point of view of parameter spaces.