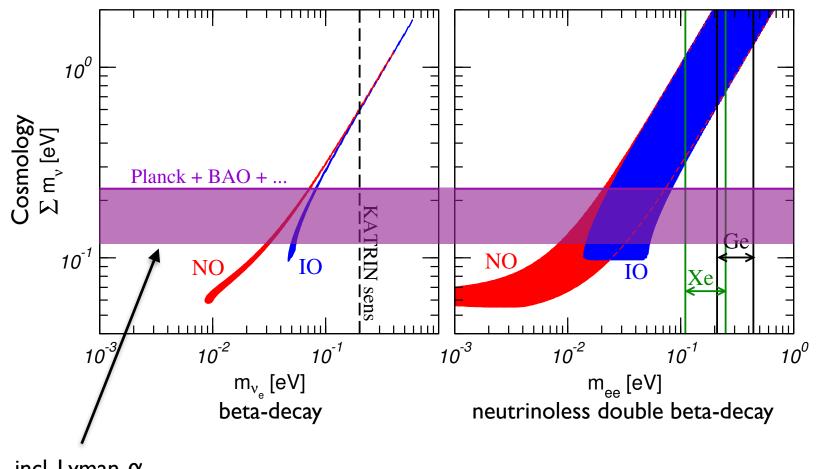


Discussion session on neutrinos

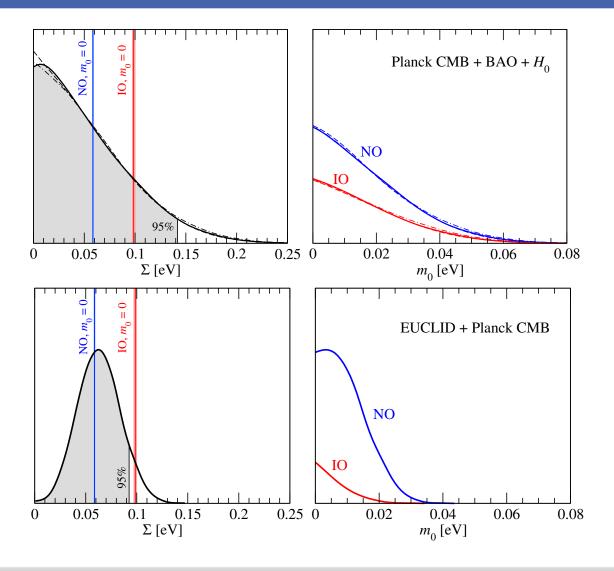
Thomas Schwetz



Proposed questions

- absolute neutrino mass observables
- are sterile neutrinos at the eV-scale still interesting?
- are non-standard neutrino interactions interesting?
- are TeV-scale neutrino models interesting?
- is type-I seesaw our "default" choice?

Absolute neutrino mass observables



incl. Lyman-α Baur et al., 1506.05976

talks by E. Lisi, M. Gerbino

Mass ordering from cosmology


talk by M. Gerbino Hannestad, Schwetz, 16

eV-scale sterile neutrinos

reactor experiments

v_{μ} disappearance

Alvaro H. Cabezudo

Mona Dentler

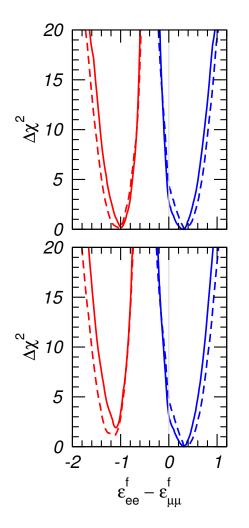
Nonstandard interactions

assume presence of NC-like dim-6 effective operators:

$$H_{\rm NSI} = \frac{G_F}{\sqrt{2}} \, \bar{\nu}_{\alpha} \gamma_{\mu} (1 - \gamma_5) \nu_{\beta} \, \sum_f \bar{f} \gamma^{\mu} \epsilon^f_{\alpha\beta} f$$

- phenomenological parameterization
- new interactions relative to standard weak interaction
- rich phenomenology (oscillation physics, new CP phases, "confusion" problem, astrophysics,…)

talk by M. Sen, L. Duarte, huge literature,....

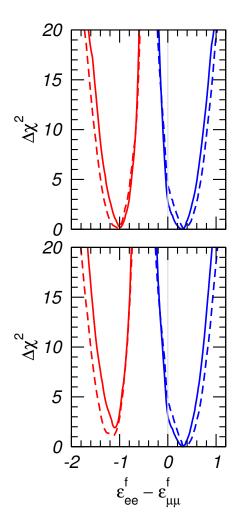

NSI constraints from oscillation data

Gonzalez-Garcia, Maltoni, 1307.3092

		1	1
		$90\%~{ m CL}$	
Param.	best-fit	LMA	$\rm LMA \oplus \rm LMA\text{-}\rm D$
$\varepsilon^{u}_{ee} - \varepsilon^{u}_{\mu\mu}$	+0.298	[+0.00, +0.51]	\oplus $[-1.19, -0.81]$
$\varepsilon^{u}_{\tau\tau} - \varepsilon^{u}_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.03, +0.03]
$\varepsilon^{u}_{e\mu}$	-0.021	[-0.09, +0.04]	[-0.09, +0.10]
$\varepsilon^{u}_{e\tau}$	+0.021	[-0.14, +0.14]	[-0.15, +0.14]
$\varepsilon^{u}_{\mu\tau}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]
$\varepsilon^d_{ee} - \varepsilon^d_{\mu\mu}$	+0.310	[+0.02, +0.51]	\oplus [-1.17, -1.03]
$\varepsilon^d_{\tau\tau} - \varepsilon^d_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.01, +0.03]
$\varepsilon^{d}_{e\mu}$	-0.023	[-0.09, +0.04]	[-0.09, +0.08]
$\varepsilon^{\dot{d}}_{e au}$	+0.023	[-0.13, +0.14]	[-0.13, +0.14]
$\varepsilon^d_{\mu au}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]

limits of few %,

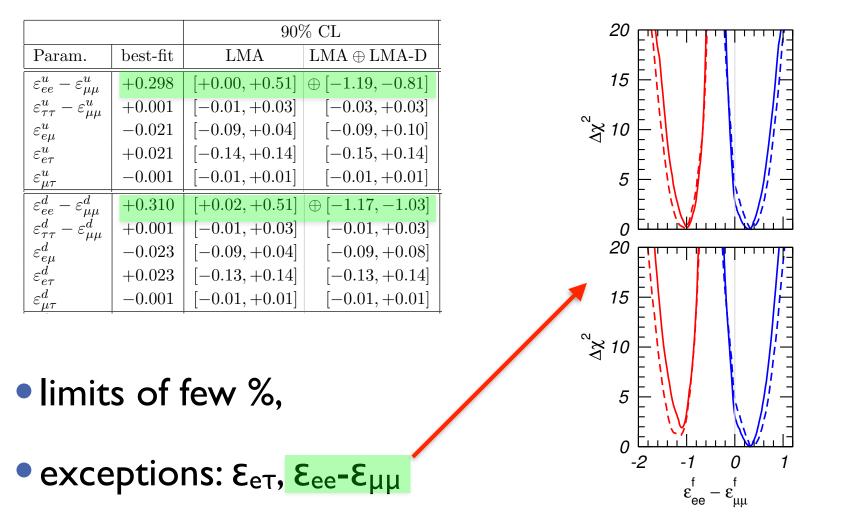
```
exceptions: ε<sub>e</sub>, ε<sub>e</sub>-ε<sub>μμ</sub>
```

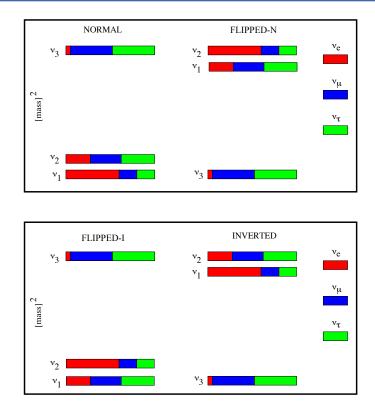


NSI constraints from oscillation data

Gonzalez-Garcia, Maltoni, 1307.3092

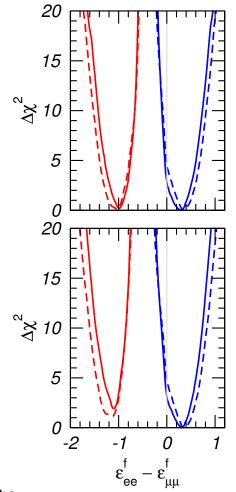
		90% CL	
Param.	best-fit	LMA	$LMA \oplus LMA-D$
$\varepsilon^{u}_{ee} - \varepsilon^{u}_{\mu\mu}$	+0.298	[+0.00, +0.51]	$\oplus \left[-1.19, -0.81 ight]$
$\varepsilon^{u}_{\tau\tau} - \varepsilon^{u}_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.03, +0.03]
$\varepsilon^{u}_{e\mu}$	-0.021	[-0.09, +0.04]	[-0.09, +0.10]
$\varepsilon^{u}_{e au}$	+0.021	[-0.14, +0.14]	[-0.15, +0.14]
$\varepsilon^{u}_{\mu\tau}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]
$\varepsilon^d_{ee} - \varepsilon^d_{\mu\mu}$	+0.310	[+0.02, +0.51]	\oplus [-1.17, -1.03]
$\varepsilon^d_{\tau\tau} - \varepsilon^d_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.01, +0.03]
$\varepsilon^d_{e\mu}$	-0.023	[-0.09, +0.04]	[-0.09, +0.08]
$\varepsilon^{\dot{d}}_{e au}$	+0.023	[-0.13, +0.14]	[-0.13, +0.14]
$\varepsilon^d_{\mu au}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]

limits of few %,


exceptions: ε_{eτ}, ε_{ee}-ε_{μμ}


NSI constraints from oscillation data

Gonzalez-Garcia, Maltoni, 1307.3092



LMA-dark degeneracy

Coloma, Schwetz, 16, Coloma et al 17

LMA-dark degeneracy makes determination of mass ordering by oscillation experiments impossible! Need data from scattering experiments.

Is this interesting at all?

$$H_{\rm NSI} = \frac{G_F}{\sqrt{2}} \, \bar{\nu}_{\alpha} \gamma_{\mu} (1 - \gamma_5) \nu_{\beta} \, \sum_f \bar{f} \gamma^{\mu} \epsilon^f_{\alpha\beta} f$$

- not gauge invariant
- generically not directly related to neutrino mass generation (dim-6,8,... vs dim-5,7,...)
- strong constraints from charged leptons
- can we expect under any circumstance O(I) NSI?

Biggio, Blennow, Fernandez-Martinez, ...

• light mediators ~ 10 MeV? explicit expample for O(1) NSI: Farzan 15; Farzan, Shoemaker, 15

TeV scale neutrino mass models

- Tiplet, Zee, Zee-Babu, Ma, L-R,...
- testable at LHC, LFV
- are they theoretically motivated?
- L-number violation at TeV: is it a challenge for Baryogenesis?

- Is it the ,,default" model?
- Does it make sense without SUSY? contribution to EW fine-tuning vs Leptogenesis, hierarchy problem: EW ↔ seesaw ↔ GUT

Is low-scale type-I preferred (as low as GeV)?

