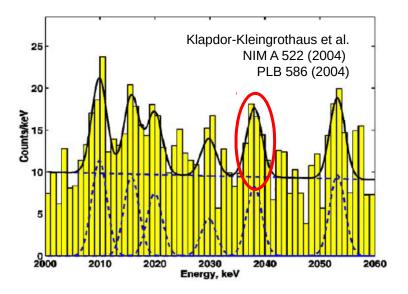

Neutrino & Dark Matter experiments – considerations

Stefan Schönert, TUM Invisibles17 workshop, June 16, 2017

How many orders of magnitudes to explore?



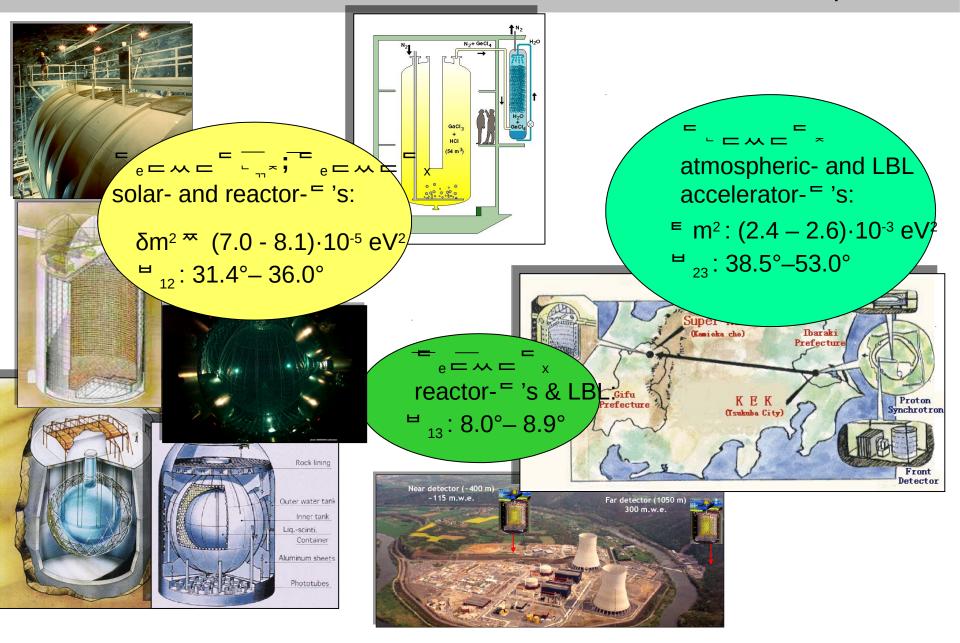
What is a convincing discovery?

- Consistent signal in more than one experiment
- Coherent theoretical description
- Our prior knowledge!at the end we all do Bayesian inference!

$^{76}\text{Ge}~0\nu\beta\beta$ search: the historic and long-discussed claim

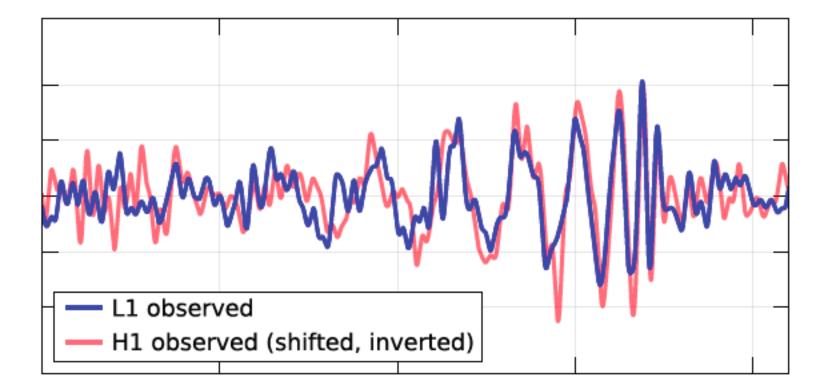
Klapdor-Kleingrothaus et al., NIM A 522 (2004), PLB 586 (2004):

- 71.7 kg year Bgd 0.17 / (kg yr keV)
- 28.75 ± 6.87 events (bgd:~60)
- Claim: 4.2° evidence for $0 = \beta\beta$
- reported $T_{1/2}^{0v} = 1.19 \times 10^{25} \text{ yr}$



N.B. Half-life $T_{1/2}^{0\nu} = 2.23 \times 10^{25} \text{ yr } T_{1/2} \text{ after}$ PSD analysis (Mod. Phys. Lett. A 21, 1547 (2006).) is not considered because:

- reported half-life can be reconstructed only (Ref. 1) with $\varepsilon_{psd} = 1$ (previous similar analysis $\varepsilon_{psd} \approx 0.6$)
- $\epsilon_{fep} = 1$ (also in NIM A 522, PLB 586 (2004) (GERDA value for same detectors: $\epsilon_{fep} = 0.9$)


(1) B. Schwingenheuer in Ann. Phys. 525, 269 (2013):

Non-zero neutrino masses established through v-oscillation experiments

How many events are needed for a discovery?

This depends on the number of background events!

LIGO: discovery potential with single event Time coincidence between two highly specific signals

0^{-} IN INCLASS: Range of m_{ee} derived from oscillation experiments $\mathbf{m}_{ee} = \mathbf{f}(\mathbf{m}_{1}, \mathbf{m}_{sol}^{2}, \mathbf{m}_{sol}^{2}, \mathbf{m}_{atm}^{2}, \mathbf{m}_{12}^{2}, \mathbf{m}_{13}^{2},$ from oscillation experiments Dell'Oro, Marcocci, Vissani, PRD 90.033005 0.1 Goal of next IH ($\Delta m^2 < 0$) generation т _{ββ} [e 0.01 experiments: 3σ CL ~10 meV NH ($\Delta m^2 > 0$) Negligible 0.001 errors from oscillations; Lower bounds! width due to

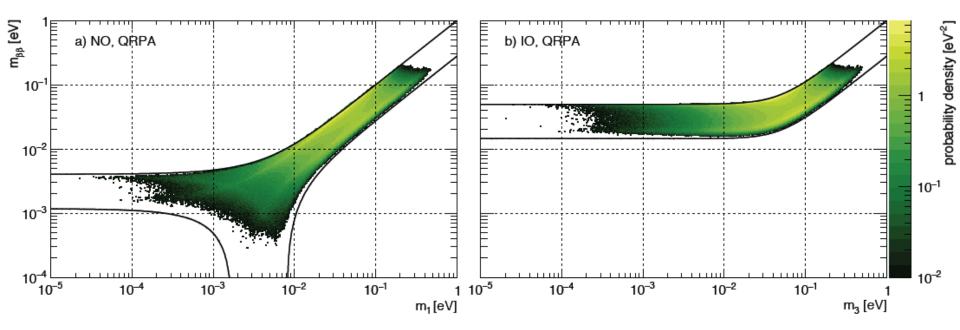
0.001

10

 10^{-4}

m_{lightest} [eV]

0.01

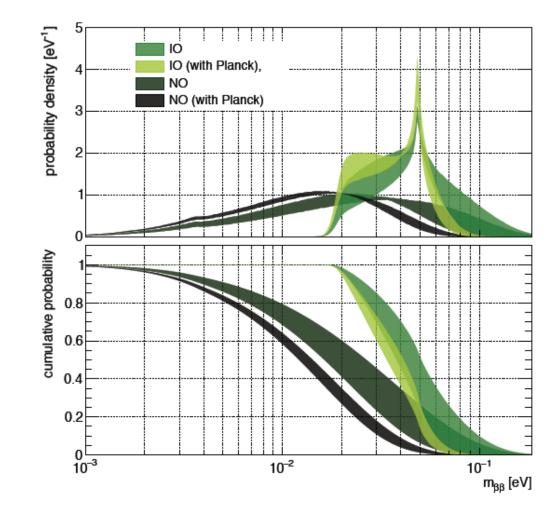

CP phases

1

0.1

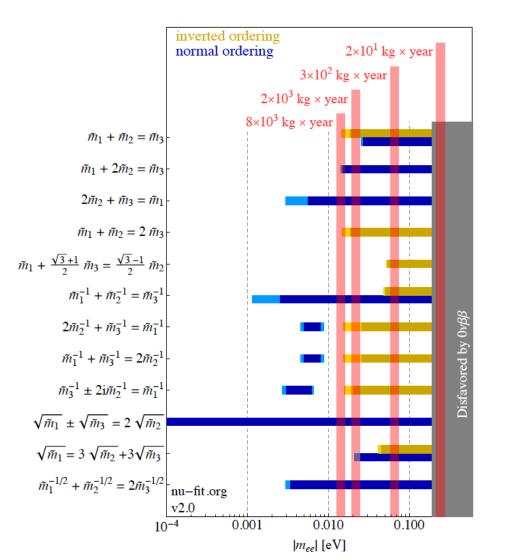
Discovery probabilities

- Global Bayesian analysis including v-oscillation, $m_{\beta} m_{\beta\beta}$, Σ
- Flat prior for Majorana phases
- Scale invariant prior for m₁

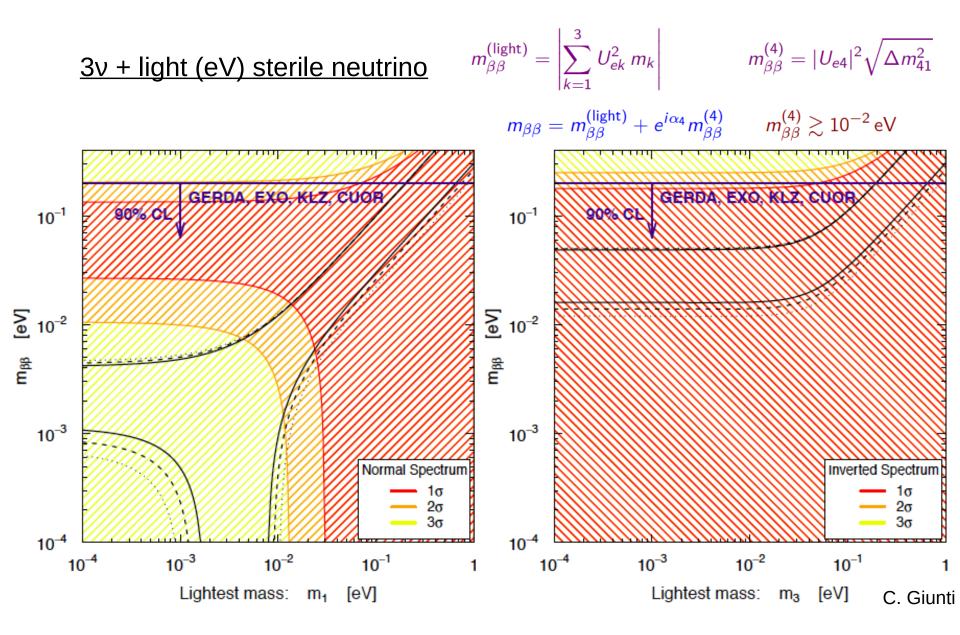


M.Agostini, G.Benato and J.Detwiler, arXiv:1705.02996v2

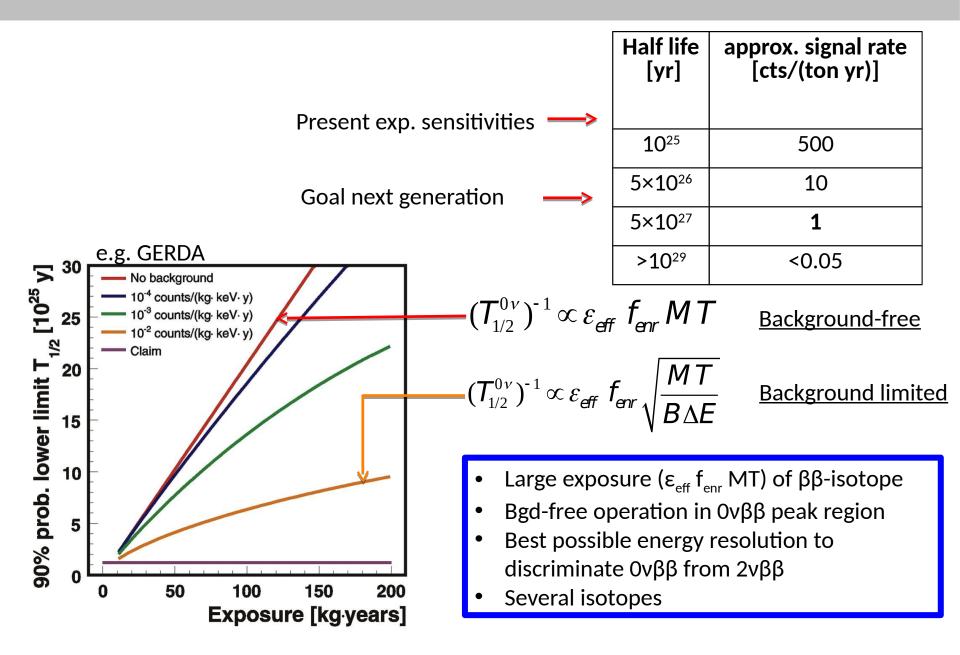
Similar work by


A. Caldwell, A. Merle, O. Schultz and M. Totzauer arXiv:1705.01945

Discovery probabilities

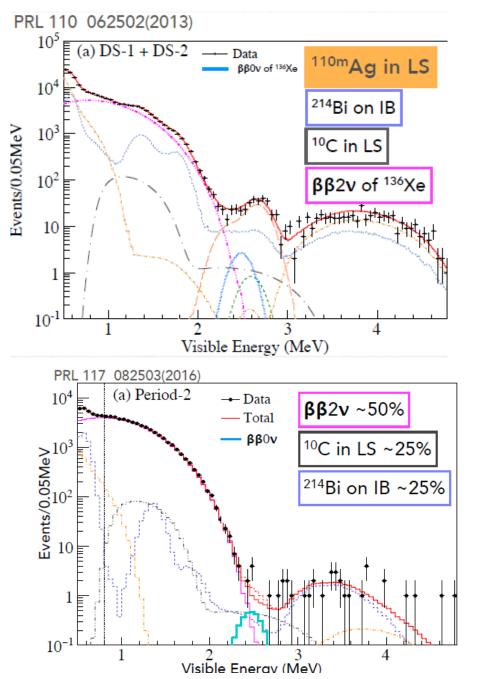

M. Agostini, Benato and Detwiler, arXiv:1705.02996v2 [hep-ex] 11 May 2017

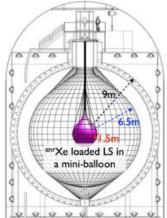
Predictions with informed priors



Range of Onbb effective mass for different classes of neutrino flavor models

arXiv:: 1506.06133v1 Agostini, Merle, Zuber Predictions after change of paradigm: eV sterile neutrinos


Signal rates & requirements for next generation experiments

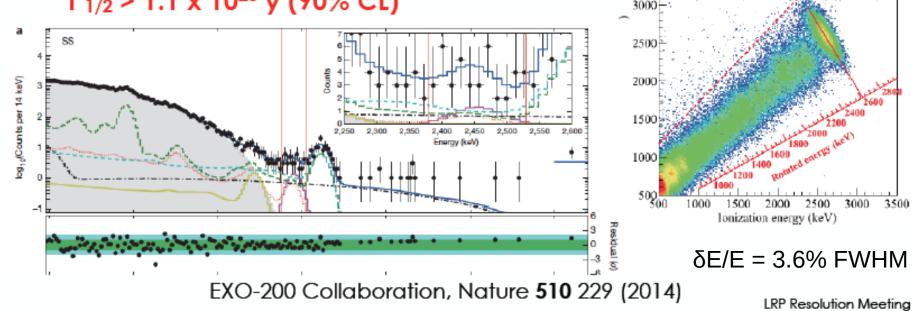

comparison experiments

		mass [kg]* (total/FV)	FWHM [keV]	background& [cnt/t yr FWHM]	T _{1/2} limit sensitivity [10 ²⁵ yr] after 4 yr	worst m _{ee} limit [meV] (lowest NME, g _A unquenched)	
Gerda II	Ge	35/27	3	5	15	190 run	ining
MajoranaD	Ge	30/24	3	5	15	190	
EXO-200	Xe	170/80	88	220	6	240	
Kamland-Z	Xe	383/88 750/??	250	90 ?	6 50	240 85 de	sign
Cuore	Те	600/206	5	230	9	210	
NEXT-100	Хе	100/80	17	30	6	240	
SNO+	Те	2340/260	190	60	17	160	
nEXO	Хе	5000/4300	58	5	600	24 fu	iture
LEGEND-200	Ge	200/155	3	1	100	75	
LEGEND-1000	Ge	1000/780	3	0.2	1000	24	

* total= element mass, FV= $0\nu\beta\beta$ isotope mass in fiducial volume (incl enrichment fraction) & kg of $0\nu\beta\beta$ isotope in active volume and divided by $0\nu\beta\beta$ efficiency Note: values are design numbers except for GERDA, EXO-200 and Kamland-Zen

Kamland-Zen

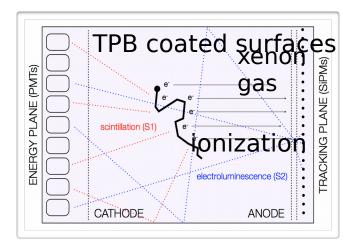
<u>Limit:</u> T_{1/2} > 1.07 _⇒ 10²⁶ y (90 % CL)

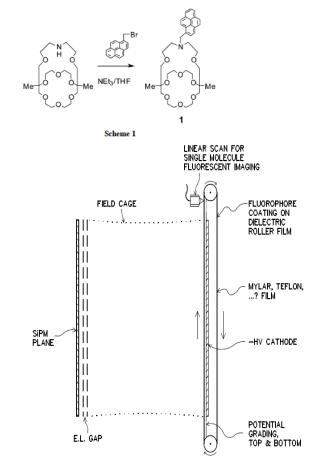

- Limit depends critically on correctness of background model
- ... and a discovery even more!

EXO-200 ¹³⁶Xe (2014)

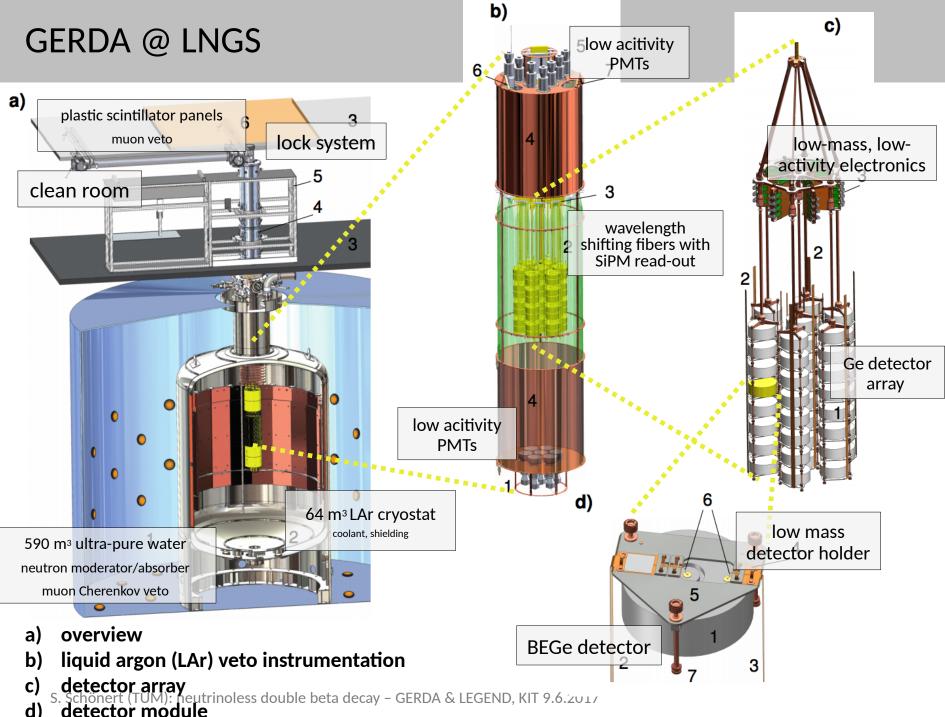
3500

• Enriched Liquid Xe in TPC


- Q_{ββ}=2457.8 keV
- 200 kg of 80.6 % enriched¹³⁶Xe
- 75.6 kg fiducial mass,
- 100 kg years exposure
- Combine Scintillation-Ionization signal for improved resolution (88 keV FWHM @ Q_{ββ})
- Single site Multisite discrimination
 T_{1/2} > 1.1 x 10²⁵ y (90% CL)

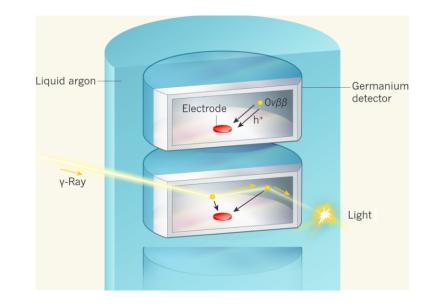

April 18, 2015

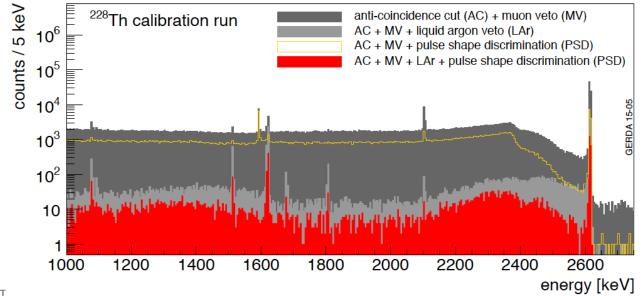
NEXT-XX: A series of photonic TPCs



- •NEXT: High Pressure Xenon (HPXe) TPC operating in electroluminescent (EL) mode.
- •NEXT-100: 100 kg of Xenon enriched at 90% in Xe-136 (in stock) at a pressure of 15 bar.
- •Excellent energy resolution in gas phase:
- $\delta E/E = 5 \times 10^{-3}$ FWHM possible
- Topology available for background rejection
- Long-dreamed of Ba tagging ?

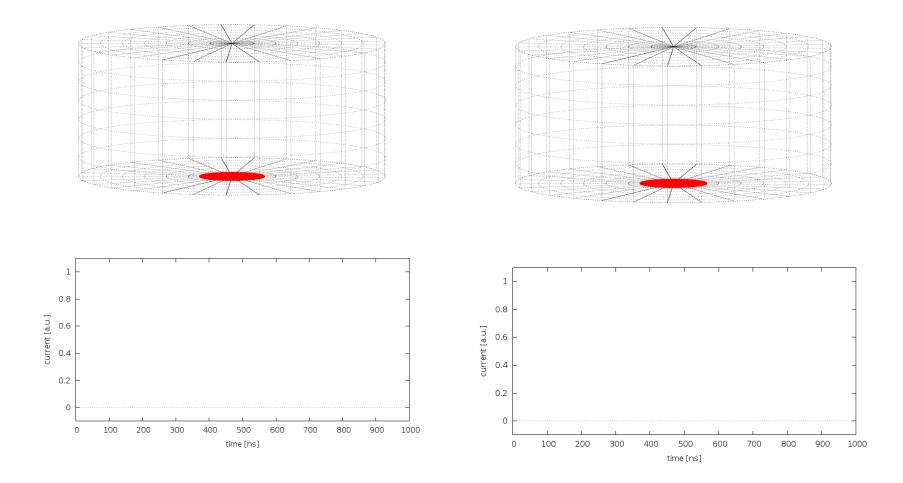
Fluorescent indicator specific to Ba++




HIGH PRESSURE XENON GAS ELECTROLUMINESCENT TPC WITH SINGLE MOLECULE FLUORESCENT IMAGING OF BARIUM DAUGHTER

d)

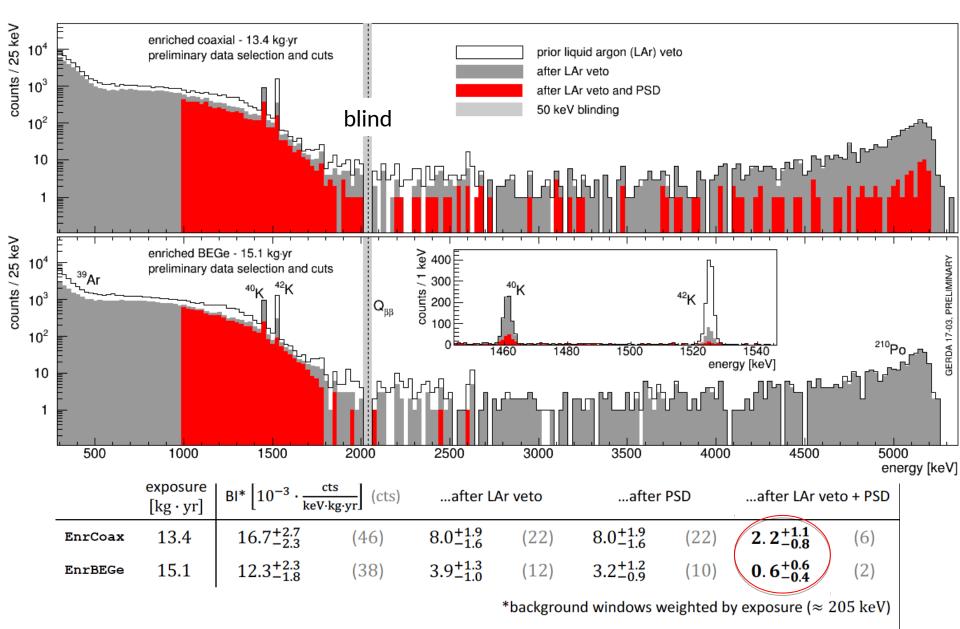
LEGEND: active background suppression



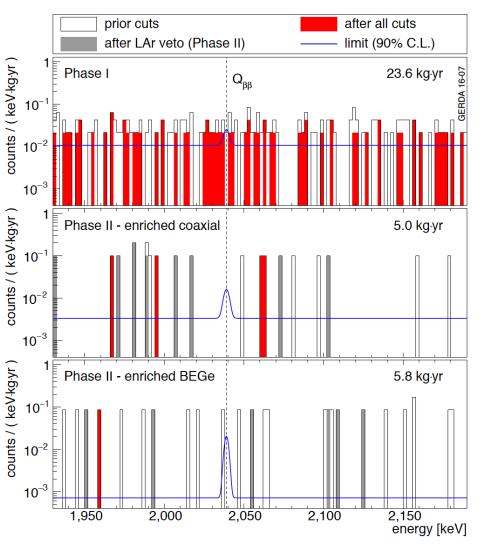
S. Schönert (Томи, полинноюзэ доцые вста досау – оскол се сеостир, кт. 7.0.2017

Event identification

Double beta decay candidate event


Background candidate event

S. Schönert (TUM): neutrinoless double beta decay – GERDA & LEGEND, KIT 9.6.2017



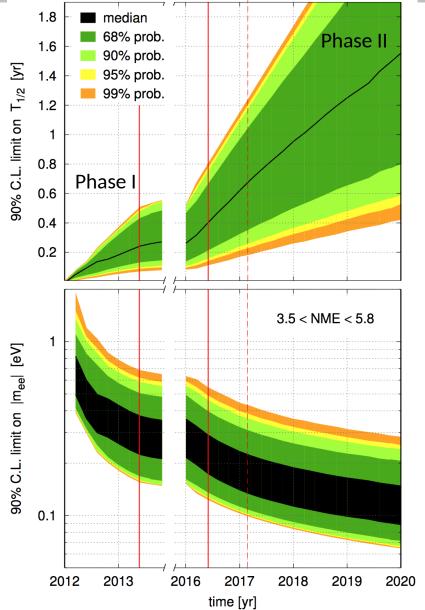
Energy spectra 28.5 kg yr: before and after LAr veto & PSD

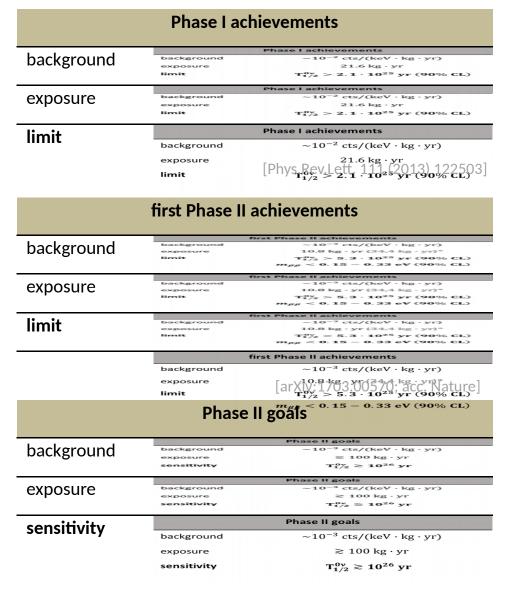
Unblinding 10.8 kg yr (PIIa) arXiv:1703.00570

	dataset	exposure [kg · yr]	FWHM [keV]	efficiency*	[10 ⁻³ dl ket kg yr]	dataset	exposure [kg·yr]	FWHM [krV]	efficiency*	[10 ⁻³ ds bev bg yr]						dataset	exposure [kg · yr]	FWHM [keV]	efficiency*	[10 ⁻³ Bl cts keV-kg yr
	Pigolden	17.9	4.3(1)	0.57(3)	11 ± 2	Pigsiden	17.9	4.3(1)	0.57(3)	11 ± 2						Pigolden	17.9	4.3(1)	0.57(3)	11 ± 2
dataset	PI solver	1.3	4.3(1)	0.57(3)	30 ± 10	PI solver	1.3	4.3(1)	0.57(3)	30 ± 10		offi	ria	ncy	, *	PI solver	1.3	4.3(1)	0.57(3)	30 ± 10
ualasel	PI BEGe	2.4	2.7(2)	0.66(2)	5+4	PIBEGe	2.4	2.7(2)	0.66(2)	5+4			LIC	ncy		PI BEGe	2.4	2.7(2)	0.66(2)	545
	Pi extra	1.9	4.2(2)	0.58(4)	5+4	Plextra	1.9	4.2(2)	0.58(4)	5.3						PI extra	1.9	4.2(2)	0.58(4)	5+4
	Pila coaxial	5.0	4.0(2)	0.53(5)	3.5+2.1	Pila coaxial	5.0	4.0(2)	0.53(5)	3.5+2.1						Pila coaxial	5.0	4.0(2)	0.53(5)	$3.5^{+2.1}_{-1.5}$
	Pila 8EGe	5.8	3.0(2)	2) 0.64(2)	0.7+11	Pila BEGe	5.8	3.0(2)	0.60(2)	0.7+1.1						Pila BEGe	5.8	3.0(2)	0.60(2)	$0.7^{+1.1}_{-0.5}$
	dataset	(kg · yr)	[keV]	efficiency*	[10 ⁻³ 10 10	dataset	(hg-yr)	[kcV]	efficiency*	[10 ⁻² 10 10	dataset	exposure [kg·yr]	[keV]	efficiency*	[10 ⁻² 10 keV kg yr	dataset	(kg · yr)	[keV]	efficiency*	[10 ⁻³ [11] 111
Disaldara	P1 golden R1 solver	17.9	4.3(1) 4.3(1)	0.57(3) 0.57(3)	11 ± 2 30 ± 10	P1 galiden P1 solver	17.9	4.3(1) 4.3(1)	0.57(3) 0.57(3)	11 ± 2 30 ± 10	P1 golden 81 solver	17.9	4.3(1) 4.3(1)	0.57(2) 0.57(2)	11 ± 2 30 ± 10	P1 golden P1 solver	17.9	4.3(1)	0.57(2) 0.57(2)	11 ± 2 20 ± 10
PI golden	PIDEGe	2.4	2.7(2)	0.66(2)	521	PIECCE	2.4	2.7(2)	0.66(2)	523	PIBEGe	2.4	2.7(2)	0.66(2)	573	PIBEGe	2.4	2.7(2)	0.66(2)	511
0	Prextra	1.9	4.2(2)	0.58(4)	525	PLEXTRA	1.9	4.2(2)	0.58(4)	523	Ptextra	1.9	4.2(2)	0.58(4)	515	P1 extra	1.9	4.2(2)	0.50(4)	511
	Pita coaxial Pita 005e	5.0	4.8(2) 3.8(2)	0.53(5) 0.60(2)	3.5222	Pita coaxial Pita 86Ge	5.0 5.9	4.0(2) 3.0(2)	0.53(5) 0.69(2)	0.7223	Pita coaxial Pita BCGe	5.0 5.0	4.0(2) 3.0(2)	0.53(5) 0.60(2)	3.5722 0.7722	Pita coaxial Pita BEGe	5.0	4.0(2) 3.0(2)	0.53(5) 0.60(2)	0.722.0
	dataset	Exposure [kg · yr]	[keV]	efficiency*	10 ⁻³ 10	dataset	exposure like vrl	Down Income	efficiency*	[10 ⁻² 10 keV hg cr	dataset	exposure [kg·yr]	[keV]	efficiency*	[10 ⁻³ 10 10 10	dataset	exposure [kg·yr]	[keV]	efficiency*	[10 ⁻³ [10] [10]
	P1 golden	17.9	4.3(1)	0.57(3)	11 ± 2	P1galden	17.9	4.3(1)	0.57(3)	11 ± 2	P1 golden	17.9	4.3(1)	0.57(3)	11 ± 2	P1 goliden	17.9	4.3(1)	0.57(2)	11 ± 2
PI solver	P1 solver R1 BEGe	1.3	4.3(1) 2.7(2)	0.57(3)	30 ± 10	Pisaber R Mile	1.3	4.3(1) 2.7(2)	0.57(3) 0.66(2)	30 ± 10	P1 solver	1.3	4.3(1) 2.7(2)	0.57(2) 0.66(2)	30 ± 10	P1 solver	1.3	4.3(1) 2.7(2)	0.57(2)	30 ± 10
11301/01	PLOCO	1.9	4.2(2)	0.66(2) 0.58(4)	521 521	PLECOP	1.9	4.2(2)	0.58(2)	522	Pletta	1.9	4.2(2)	0.58(4)	572	P1 BEGe P1 extra	1.9	4.2(2)	0.66(2) 0.50(4)	511
	Ptta coaxial	5.0	4.0(2)	0.53(5)	3.5713	Pita couxial	5.0	4.0(2)	0.53(5)	3.5223	Pita coaxial	5.0	4.0(2)	0.53(5)	3.5722	Pila coaxial	5.0	4.0(2)	0.53(5)	3.5213
	Pila BEGo	5.0	3.8(2)	0.60(2)	0.7721	Pila BEGa	5.0	3.0(2)	0.60(2)	0.7:21	Pita BEGe	5.0	3.0(2)	0.60(2)	0.7121	Pila BEGe	5.0	3.0(2)	0.60(2)	0.7122
	dataset	[kg · yr]	[keV]	efficiency*	10-3 121 have been	dataset	(kg-yr)	[keV]	efficiency*	[10 ⁻² 10 heV hg yr	dataset	[kg·yr]	[keV]	efficiency"	[10-3 100 have 1	dataset	[kg·yr]	[keV]	efficiency*	10 ⁻² 115 he'' by y
PI BEGe	P1 golden P1 solver	17.9	4.3(1) 4.3(1)	0.57(3) 0.57(3)	11 ± 2 30 ± 10	P1 galiden P1 solver	17.9	4.3(1) 4.3(1)	0.57(3) 0.57(3)	11 ± 2 30 ± 10	P1 golden P1 solver	17.9	4.3(1) 4.3(1)	0.57(2) 0.57(2)	11 ± 2 30 ± 10	P1 golden P1 solver	17.9	4.3(1)	0.57(2) 0.57(2)	11 ± 2 20 ± 10
PIBEGe	PIBEGe	2.4	2.7(2)	0.66(2)	522	PIECSe	2.4	2.7(2)	0.66(2)	522	PIBEGe	2.4	2.7(2)	0.66(2)	512	PIDEGe	2.4	2.7(2)	0.66(2)	522
	Ptextra Ptta coaxial	1.9	4.2(2) 4.0(2)	0.58(4) 0.53(5)	3.5.13	Pt extra Pte convial	1.9	4.2(2)	0.58(4) 0.53(5)	3511	Pt extra Pila coaxial	1.9	4.2(2)	0.58(4)	3.5712	Pt extra Pite coaxial	1.9	4.2(2)	0.58(4) 0.53(5)	3.5212
	Pila BEGe	5.0	2.0(2)	0.60(2)	0.772.2	Pila BGGe	5.0	3.0(2)	0.60(2)	0.7:23	Pila BCGe	5.0	3.0(2)	0.60(2)	0.7722	Pila BCGo	5.0	3.0(2)	0.60(2)	0.7223
	dataset	(kg · yr)	[keV]	efficiency*	[10 ⁻³ 131 heV bg et]	dataset	(kg-yr)	[kcV]	efficiency*	[10 ⁻² 10/2 hg or	dataset	exposure [kg·yr]	[keV]	efficiency*	[10 ⁻³ 101 keV bg st	dataset	[kg·yr]	[keV]	efficiency*	[10 ⁻² HI 110
DI sustaine	P1 golden	17.9	4.3(1) 4.3(1)	0.57(3) 0.57(3)	11 ± 2 30 + 10	P1 galiden	17.9	4.3(1) 4.3(1)	0.57(3) 0.57(3)	11 ± 2 30 ± 10	Pt golden	17.9	4.3(1) 4.3(1)	0.57(2) 0.57(2)	11 ± 2 20 + 10	P1 goliden	17.9	4.3(1) 4.3(1)	0.57(2) 0.57(2)	11 ± 2 30 ± 10
PI extra	P1 bbber P1 bbber	1.3	4.3(1) 2.7(2)	0.57(3) 0.66(2)	30±10 521	P1 solver P1 BCGe	1.3	4.3(1) 2.7(2)	0.57(3) 0.66(2)	30±10 5*1	P1 solver P1 855e	1.3	4.3(1) 2.7(2)	0.57(2) 0.66(2)	30 ± 10 511	P1 solver P1 BEGe	1.3	4.3(1) 2.7(2)	0.57(2) 0.66(2)	30 ± 10 511
	Prestra	1.9	4.2(2)	0.58(4)	523	PLEXTRA		4.2(2)	0.58(4)	523	Ptextra	1.9	4.2(2)	0.58(4)	523	P1 extra	1.9	4.2(2)	0.50(4)	523
	Pita coaxial Pita 005e	5.0	4.0(2)	0.53(5)	3.5713 0.7723	Pita coaxial Pita Milia	5.0	4.0(2)	0.53(5)	0.2223	Pita coaxial Pita BEGa	5.0	4.0(2) 3.0(2)	0.53(5)	3.5722 0.7722	Pita coaxial Pita BEGe	5.0	4.0(2) 3.0(2)	0.53(5) 0.60(2)	3.5213
	dataset	exposure [kg · yr]	[keV]	efficiency*	10 ⁻³	dataset	exposure [kg-yr]	[keV]	efficiency*	[10 ⁻² 10 - 10	dataset	exposure [kg · yr]	[keV]	efficiency"	[10 ⁻³ 10 10	dataset	exposure [kg · yr]	[keV]	efficiency*	[10 ⁻³ Bi
BU 11	P1 golden	17.9	4.3(1)	0.57(3)	11 ± 2	P1 guliden	17.9	4.3(1)	0.57(3)	11 ± 2	P1 golden	17.9	4.3(1)	0.57(3)	11 ± 2	P1 golden	17.9	4.3(1)	0.57(2)	11 ± 2
PIIa coaxial	P1 solver P1 865e	1.3	4.3(1) 2.7(2)	0.57(3) 0.66(2)	30±10 511	Pt solver Pt 805e	1.3	4.3(1) 2.7(2)	0.57(3) 0.66(2)	30±10 511	P1 solver P1 85Ge	1.3	4.3(1) 2.7(2)	0.57(2) 0.66(2)	20 ± 10 5 ⁺¹	P1 solver P1 BEGe	1.3	4.3(1) 2.7(2)	0.57(2) 0.66(2)	30 ± 10 511
i na couxiai	PLOCOP	1.9	4.2(2)	0.56(2) 0.58(4)	523	PI EDGe PI extra	1.9	4.2(2)	0.58(4)	523	Plextra	1.9	4.2(2)	0.58(4)	573	P1 BEGe P1 extra	1.9	4.2(2)	0.56(2)	523
	Pila coaxial Pila BEGe	5.0 5.0	4.0(2)	0.53(5)	3.5713	Pita couxial	5.0 5.0	4.0(2)	0.53(5)	3.5.11	Pita coaxial	5.0 5.0	4.0(2)	0.53(5)	3.5712	Pila coaxial	5.0	4.0(2)	0.53(5)	3.5213
	Pila BCGo dataset	exposure [kg · yr]	3.0(2) FWHM	0.60(2)		Pila BLGe	exposure	FWHM	0.60(2)		Pita BEGo	exposure	EW0104	0.60(2)		Pita BEGo	exposure [kg·yr]	SUCCESSION [keV]	0.60(2)	Di
	PLEORIN	[kg-yr]	[keV] 4.3(1)	0.57(3)	[10 ⁻³ 10 heV dg yn]	PLastden	[Rg-34]	[keV] 4.3(1)	0.57(2)	[10 ⁻² 10 her hg re]	Placiden	(kg · yr)	[keV] 4.3(1)	0.57(2)	[10 ⁻³ 10 heV hg yr]	Plachden	[Rg - yr]	[keV] 4.3(1)	0.57(2)	10-3 tts keV-bg st
PIIa BFGe	Pisober	1.3	4.3(1)	0.57(3)	30 ± 10	Pisaber	1.3	4.3(1)	0.57(3)	30 ± 10	P1 solver	1.3	4.3(1)	0.57(2)	30 ± 10	P1 solver	1.2	4.3(1)	0.57(2)	30 ± 10
FIIA DEGE	P105Ge P1extra	2.4	2.7(2)	0.66(2)	511 511	PI BOGe	2.4	2.7(2)	0.66(2)	512 512	PI BEGe	2.4	2.7(2) 4.2(2)	0.66(2)	511 511	PI DEGe	2.4	2.7(2) 4.2(2)	0.66(2) 0.50(4)	522
	Pite coaxial	5.0	4.0(2)	0.53(5)	3.5212	Placesial	5.0	4.2(2)	0.53(4) 0.53(5)	3.5.11	Ptextra Ptta coaxial	5.0	4.2(2)	0.53(5)	3.5722	Pite coaxial	5.0	4.0(2)	0.58(4) 0.53(5)	3.5222
	Pile BEGe	5.0	3.6(2)	0.60(2)	0.7*7.0	PER RECO	5.0	3.0/25	0.60(2)	0.7723	Pile Revie	5.0	3.0(2)	0.60(2)	0.7723	Pila BEGe	5.0	3.0(2)	0.60(2)	0.2*2.2

- Phase I: improved energy reconstruction, extra data
- unbinned profile likelihood: flat background, Gaussian signal

				e likelih -test-st		Bayesian flat prior				
	Profile likelihood 2-side-test-stat**	Bayesian flat prior		Profile likelihood 2-side-test-stat**	Bayesian flat prior		Profile likelihood 2-side-test-stat**	Bayesian flat prior		
$0\nu\beta\beta$ best fit value [cts]	0	o	$0\nu\beta\beta$ best fit value [cts]	0	0	$0\nu\beta\beta$ best fit value [cts]	0	0		
$T_{1/2}^{0\nu}$ lower limit [10 ²⁵ yr]	> 5.3 (90% CL)	> 3.5 (90% CI)	$T_{1/2}^{0\nu}$ lower limit [10 ²⁵ yr]	> 5.3 (90% CL)	> 3.5 (90% CI)	$T_{1/2}^{0\nu}$ lower limit [10 ²⁵ yr]	> 5.3 (90% CL)	> 3.5 (90% C		
T ^{ον} _{1/2} median sensitivity [10 ²⁵ yr]	> 4.0 (90% CL)	> 3.1 (90% CI)	$T_{1/2}^{0\nu}$ median sensitivity [10 ²⁵ yr]	> 4-0 (90% CL)	> 3.1 (90% CI)	$T_{1/2}^{0 u}$ median sensitivity [10^{25} yr]	> 4. 0 (90% CL)	> 3.1 (90% C		
	Profile likelihood 2-side-test-stat**	Bayesian flat prior		Profile likelihood 2-side-test-stat**	Banesian flat prior		Profile likelihood 2-side-test-stat**	Bayesian flat prior		
0νββ best fit value [cts]	0	0	$0\nu\beta\beta$ best fit value [cts]	0		0νββ best fit value [cts]	0	0		
T ^{0v} _{1/2} lower limit [10 ²⁵ yr]	> 5.3 (90% CL)	> 3.5 (90% CI)	$T_{1/2}^{0\nu}$ lower limit [10 ²⁵ yr]	> 5.3 (90% CL)	> 3.5 (90% CI)	$T_{1/2}^{0\nu}$ lower limit [10 ²⁵ yr]	> 5.3 (90% CL)	> 3.5 (90% 0		
T ^{0v} _{1/2} median sensitivity [10 ²⁵ yr]	> 4.0 (90% CL)	> 3.1 (90% CI	$T_{1/2}^{0\nu}$ median sensitivity [10 ²⁵ yr]	> 4.0 (90% CL)	> 3.1 (90% CI)	$T_{1/2}^{0\nu}$ median sensitivity [10^{25} yr]	> 4. 0 (90% CL)	> 3.1 (90% 0		
	Profile likelihood 2-side-test-stat**	Bayesian flat prior		Profile likelihood 2-side-test-stat**	Bayesian flat prior		Profile likelihood 2-side-test-stat**	Bayesian flat prior		
$0\nu\beta\beta$ best fit value [cts]	0	0	$0\nu\beta\beta$ best fit value [cts]	0	0	$0\nu\beta\beta$ best fit value [cts]	0	0		
T ^{0v} _{1/2} lower limit [10 ²⁵ yr]	> 5.3 (90% CL)	> 3.5 (90% CI)	$T_{1/2}^{0\nu}$ lower limit [10 ²⁵ yr]	> 5.3 (90% CL)	> 3.5 (90% CI)	$T_{1/2}^{0\nu}$ lower limit [10 ²⁵ yr]	> 5.3 (90% CL)	> 3.5 (90%		
T ^{0v} _{1/2} median sensitivity [10 ²⁵ yr]	> 4.0 (90% CL)	> 3.1 (90% CI)	median sensitivity [10 ²⁵ yr]	> 4.0 (90% CL)	> 3.1 (909 CI)	T ⁰ _{1/2} median sensitivity [10 ²⁵ yr]	> 4.0 (90% CL)	> 3.1 (90%		


*including enrichment, active mass, reconstruction efficiencies, dead times


**frequentist test-statistics and methods [EPJC 71 (2011) 1554]

S. Schönert (TUM): neutrinoless double beta decay - GERDA & LEGEND, KIT 9.6.2017

GERDA Phase II: first **background-free** 0vββ experiment

S. Schönert (TUM): neutrinoless double beta decay - GERDA & LEGEND, KIT 9.6.2017

*combining Phase I and Phase II data

The future of ⁷⁶Ge-experiments


GERDA

Bare enrGe array in liquid argon
Shield: high-purity liquid Argon / H₂O
Phase I: 17 kg (HdM/IGEX) - completed
Phase II: 38 kg enriched in ⁷⁶Ge

Majorana-Demonstrator (MJD)

•Array(s) of enrGe housed in high-purity electroformed copper cryostat

- •Shield: electroformed copper / lead
- 30 kg enriched in ⁷⁶Ge

Physics goals: degenerate mass range Technology: study of bgds. and exp. techniques

open exchange of knowledge & technologies (e.g. MaGe MC)
 intention to merge for future large scale ⁷⁶Ge experiment selecting the best technologies tested in GERDA and Majorana

Large Enriched Germaium Experiment for Neutrinoless ββ Decay - LEGEND

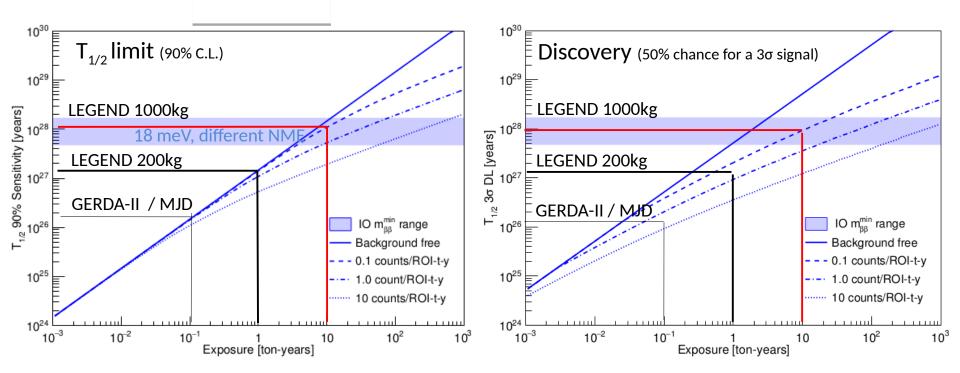
Collaboration forming:

- 1st Munich April 2016
- **2**nd Atlanta October 2016
- 3rd LNGS May 15-17

LEGEND mission: "The collaboration aims to develop a phased, Ge-76 based double-beta decay experimental program with **discovery potential** at a half-life significantly longer than 10²⁷ years, using existing resources as appropriate to expedite physics results."

<u>First stage:</u>

- (up to) 200 kg in upgrade of existing infrastructure at LNGS
- bgd reduction by factor 3-5 w.r.t
 GERDA

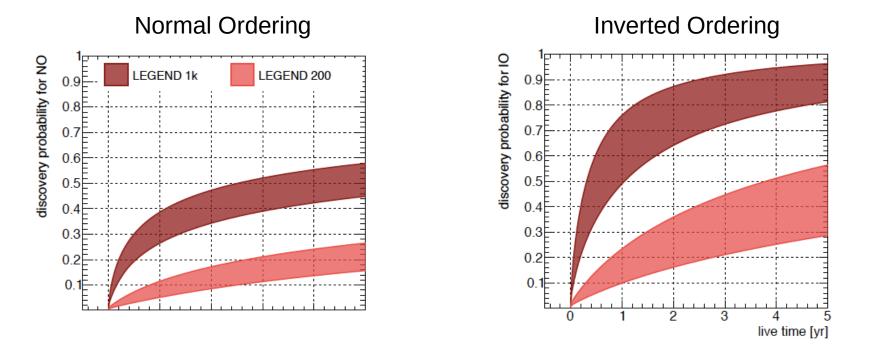


Subsequent stages:

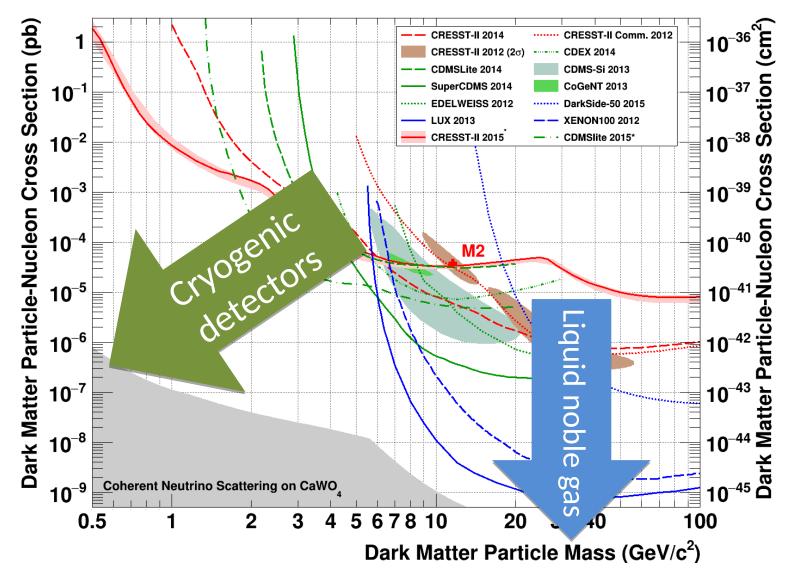
- 1000 kg (staged)
- timeline connected to DOE down select process
- x30 bgd reduction wrt GERDA
- Location tbd
- Required depth (Ge-77m) under investigation

S. Schönert (TUM): neutrinoless double beta decay - GERDA & LEGEN

LEGEND: sensitivities for limit setting and discovery


Plot details:

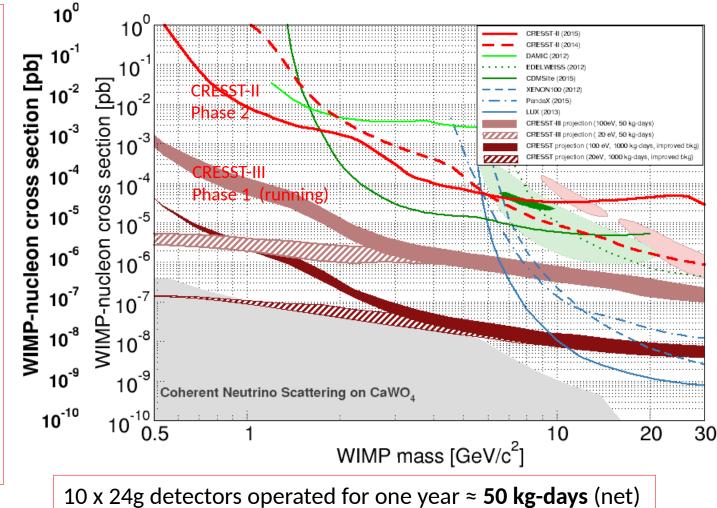
- 60% "efficiency" including isotope fraction, active volume fraction, analysis cuts
- GERDA-II / MJD: 3 counts/(ROI t yr)
- LEGEND-200: 0.6 counts/(ROI t yr)
- LEGEND-1000: 0.1 counts/(ROI t yr)


N.B.: background-free operation is a prerequisite for a discovery

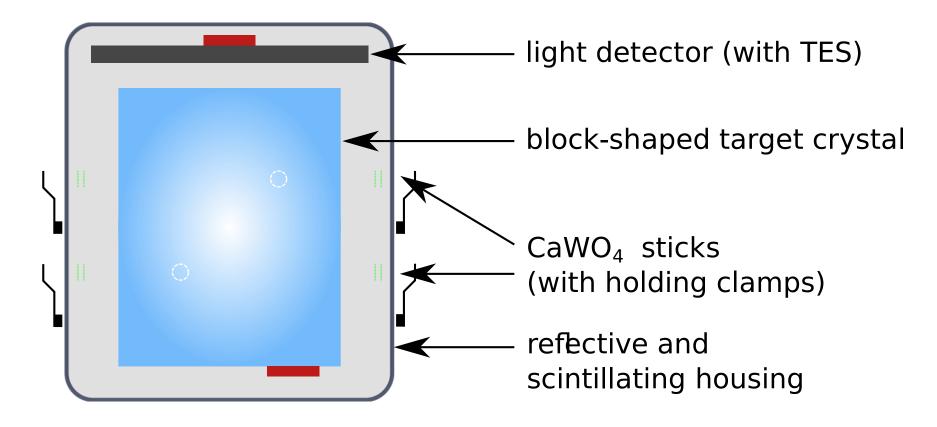
S. Schönert (TUM): neutrinoless double beta decay - GERDA & LEGEND, KIT 9.6.2017

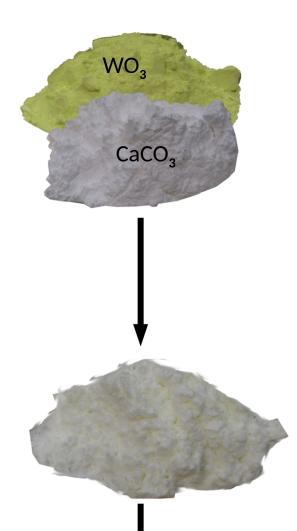
Discovery probabilities

Direct Dark Matter Search experiments

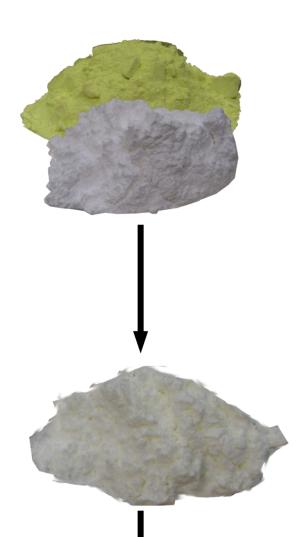


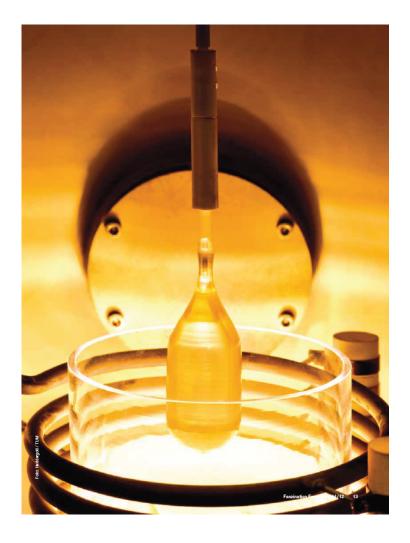
CRESST-III Phases


CRESST-III Phase 1 (assumptions)

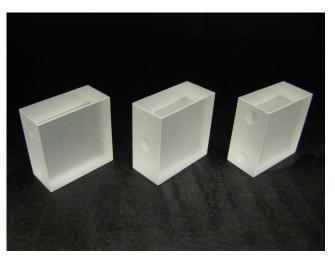

- 24g CaWO₄ crystal
- E_{th} = 100eV
- Light detector improved by factor 2 (due to smaller volume)
- 2x more detected light: due to thin crystal
- CRESST-II radiopurity

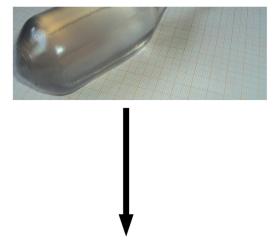
CRESST collab. G. Angloher et al. arXiv:1503.08065

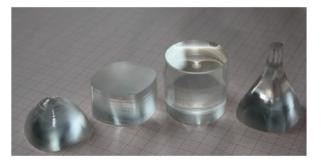

CRESST: phonon and light – fully scintillating design



- Shipment of raw material by sea / road transport
- Underground storage to minimize cosmic activation
- Chemical purification of raw material

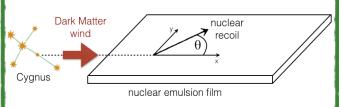

Czochralski crystal pulling at TUM

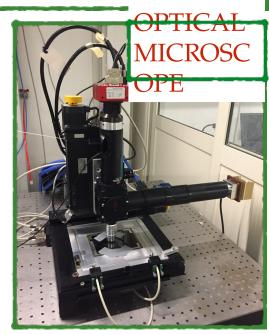




In house crystal cutting, machining and polishing

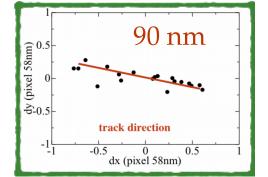
(New crystals for CRESST-III Phase 1)

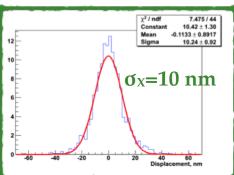

Detector production: TES evaporation on CaWO₄ and on SOS light detector



NEWS

- <u>Aim</u>: detect the direction of **nuclear recoils** produced in WIMP interactions
- <u>Target</u>: nanometric nuclear emulsions acting both as target and tracking detector
- <u>Background reduction</u>: neutron shied surrounding the target
- <u>Fixed pointing</u>: target mounted on equatorial telescope constantly pointing to the Cygnus Constellation
- Location: Underground Gran Sasso Laboratory


• Polyethylene/Lead shield against environmental background


- •Cooling system to preserve emulsions
- First technical test installed in March 2017

NANOMETRIC TRACK RECONSTRUCTION

Exploit resonant light scattering
Measurement of track slope and length beyond optical resolution
Upprecedented accuracy of 10 pm

•Unprecedented accuracy of **10 nm** achieved on both coordinates

Some concluding remarks

- Optimize experiments and analysis for discovery
- Exploit multitude of signatures & reduce backgrounds
- There is a good chance of discovery already in current experiments
- Stay as close as possible to linear range of sensitivity vs. exposure = best use of costly isotopes / target mass
- Support healthy competition: different targets/isotopes and techniques
- Stay open for new ideas and techniques scaling in mass is needed, but maybe we have new and better ideas....

And maybe:

